Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Creep And Oxidation Of Hafnium Diboride-Based Ultra High Temperature Ceramics At 1500°C, Anthony J. Degregoria Dec 2015

Creep And Oxidation Of Hafnium Diboride-Based Ultra High Temperature Ceramics At 1500°C, Anthony J. Degregoria

Theses and Dissertations

Ultra high temperature ceramics (UHTCs) are leading candidates for aerospace structural applications in high temperature environments, including the leading edges of hypersonic aircraft and thermal protection systems for atmospheric re-entry vehicles. Before UHTCs can be used in such applications, their structural integrity and environmental durability must be assured, which requires a thorough understanding and characterization of their creep and oxidation behavior at relevant service temperatures.


Creep Behavior In Interlaminar Shear Of A Hi-Nicalon™/Sic-B4c Composite At 1200°C In Air And In Steam, Marina B. Ruggles-Wrenn, Matthew T. Pope Nov 2015

Creep Behavior In Interlaminar Shear Of A Hi-Nicalon™/Sic-B4c Composite At 1200°C In Air And In Steam, Marina B. Ruggles-Wrenn, Matthew T. Pope

Faculty Publications

Creep behavior in interlaminar shear of a non-oxide ceramic composite with a multilayered matrix was investigated at 1200C in laboratory air and in steam environment. The composite was produced via chemical vapor infiltration (CVI). The composite had an oxidation inhibited matrix, which consisted of alternating layers of silicon carbide and boron carbide and was reinforced with laminated Hi-NicalonTM fibers woven in a five-harness-satin weave. Fiber preforms had pyrolytic carbon fiber coating with boron carbon overlay applied. The interlaminar shear properties were measured. The creep behavior was examined for interlaminar shear stresses in the 16–22 MPa range. Primary …


Characterization Of Point Defects In Lithium Aluminate (Lialo2) Single Crystals, Maurio S. Holston Sep 2015

Characterization Of Point Defects In Lithium Aluminate (Lialo2) Single Crystals, Maurio S. Holston

Theses and Dissertations

Lithium aluminate (LiAlO2) is an insulating wide-band gap material currently under development for tritium breeding and radiation detection and dosimetry applications. Point defects are imperfections in a crystal lattice localized over a few atomic lengths that can alter the electrical, mechanical, or optical properties of materials. An understanding of point defect behavior is a necessary precursor for optimizing lithium aluminate for nuclear applications. This dissertation has identified and characterized the major point defects created and induced through x-ray and neutron radiation using electron paramagnetic resonance and fluorescence spectroscopy, thermoluminescence, and optical absorption. This dissertation explains for the first …


Environmental Degradation Of Nickel-Based Superalloys Due To Gypsiferous Desert Dusts, Matthew B. Krisak Sep 2015

Environmental Degradation Of Nickel-Based Superalloys Due To Gypsiferous Desert Dusts, Matthew B. Krisak

Theses and Dissertations

More than twenty-five years of continuous operation in the dusty environments of Southwest Asia have shown that degradation of gas turbine engine components due to particle ingestion is a serious threat to operations. In particular, the continued push for higher engine operating temperatures has brought a new emphasis to the damage mechanisms (for example CMAS glass formation and hot corrosion) caused by ingested particles forming molten deposits on engine components. Despite decades of research little progress has been made to mitigate the effects of CMAS and hot corrosion degradation to engine components. This research focused on hot corrosion specifically. A …


Corrosion Fatigue Crack Growth Behavior At Notched Hole In 7075-T6 Under Biaxial And Uniaxial Fatigue With Different Phases, Ali Khawagi Aug 2015

Corrosion Fatigue Crack Growth Behavior At Notched Hole In 7075-T6 Under Biaxial And Uniaxial Fatigue With Different Phases, Ali Khawagi

Theses and Dissertations

This research investigates fatigue crack propagation behavior in both air and saltwater (3.5% NaCl) environments from pre-cracked notched circular hole in a 7075-T6 cruciform specimen. With stress ratio of 0.5, biaxility stress ratio of unity, and frequency of applied load of 10 Hz, the crack growth behavior was investigated under in-plane biaxial tension-tension fatigue with 45⁰, 90⁰ and 180⁰ phase difference conditions and then compared to previous fatigue tests with no phase difference to study the effect of changing the phase differences between the applied loads on the crack growth rate. Finite Element Analysis (FEA) was used to calculate cyclic …


Improved Terahertz Modulation Using Germanium Telluride (Gete) Chalcogenide Thin Films, Alexander H. Gwin, Christopher H. Kodama, Tod V. Laurvick, Ronald Coutu Jr., Philip F. Taday Jul 2015

Improved Terahertz Modulation Using Germanium Telluride (Gete) Chalcogenide Thin Films, Alexander H. Gwin, Christopher H. Kodama, Tod V. Laurvick, Ronald Coutu Jr., Philip F. Taday

Faculty Publications

We demonstrate improved terahertz (THz) modulation using thermally crystallized germanium telluride (GeTe) thin films. GeTe is a chalcogenide material that exhibits a nonvolatile, amorphous to crystalline phase change at approximately 200 °C, as well as six orders of magnitude decreased electrical resistivity. In this study, amorphous GeTe thin films were sputtered on sapphire substrates and then tested using THz time-domain spectroscopy (THz-TDS). The test samples, heated in-situ while collecting THz-TDS measurements, exhibited a gradual absorbance increase, an abrupt nonvolatile reduction at the transition temperature, followed by another gradual increase in absorbance. The transition temperature was verified by conducting similar thermal …


Interstitial Silicon Ions In Rutile Tio2 Crystals, Eric M. Golden, Nancy C. Giles, Shan Yang, Larry E. Halliburton Apr 2015

Interstitial Silicon Ions In Rutile Tio2 Crystals, Eric M. Golden, Nancy C. Giles, Shan Yang, Larry E. Halliburton

Faculty Publications

Electron paramagnetic resonance (EPR) is used to identify a new and unique photoactive silicon-related point defect in single crystals of rutile TiO2. The importance of this defect lies in its assignment to interstitial silicon ions and the unexpected establishment of silicon impurities as a major hole trap in TiO2. Principal g values of this new S=1/2 center are 1.9159, 1.9377, and 1.9668 with principal axes along the [¯110],[001], and [110] directions, respectively. Hyperfine structure in the EPR spectrum shows the unpaired spin interacting equally with two Ti nuclei and unequally with two Si nuclei. These silicon …


Fatigue Behavior Of Im7/Bmi 5250-4 Composite At Room And Elevated Temperatures, James T. Tipton Mar 2015

Fatigue Behavior Of Im7/Bmi 5250-4 Composite At Room And Elevated Temperatures, James T. Tipton

Theses and Dissertations

The tension-tension fatigue and tension-compression fatigue behaviors of the IM7/BMI 5250-4 composite were investigated. The tension-tension fatigue of the composite with 0/90 and ±45 fiber orientations was studied at 23, 170, and 190°C. The tension-compression fatigue of the composite with 0/90 fiber orientation was examined at 23°C. The tensile and compressive properties of the composite were also evaluated at room and elevated temperatures for both 0/90 and ±45 fiber orientations. Elevated temperature had little effect on the tensile properties of the 0/90 fiber orientation, but strongly influenced the ±45 tensile properties as well as the compressive properties of both fiber …


Theoretical Investigation Of Stabilities And Optical Properties Of Si12C12 Clusters, Xiaofeng F. Duan, Larry W. Burggraf Jan 2015

Theoretical Investigation Of Stabilities And Optical Properties Of Si12C12 Clusters, Xiaofeng F. Duan, Larry W. Burggraf

Faculty Publications

By sorting through hundreds of globally stable Si12C12 isomers using a potential surface search and using simulated annealing, we have identified low-energy structures. Unlike isomers knit together by Si–C bonds, the lowest energy isomers have segregated carbon and silicon regions that maximize stronger C–C bonding. Positing that charge separation between the carbon and silicon regions would produce interesting optical absorption in these cluster molecules, we used time-dependent density functional theory to compare the calculated optical properties of four isomers representing structural classes having different types of silicon and carbon segregation regions. Absorptions involving charge transfer between segregated …


Monolithic Optofluidic Ring Resonator Lasers Created By Femtosecond Laser Nanofabrication, Hengky Chandrahalim, Qiushu Chen, Ali A. Said, Mark Dugan, Xudong Fan Jan 2015

Monolithic Optofluidic Ring Resonator Lasers Created By Femtosecond Laser Nanofabrication, Hengky Chandrahalim, Qiushu Chen, Ali A. Said, Mark Dugan, Xudong Fan

Faculty Publications

We designed, fabricated, and characterized a monolithically integrated optofluidic ring resonator laser that is mechanically, thermally, and chemically robust. The entire device, including the ring resonator channel and sample delivery microfluidics, was created in a block of fused-silica glass using a 3-dimensional femtosecond laser writing process. The gain medium, composed of Rhodamine 6G (R6G) dissolved in quinoline, was flowed through the ring resonator. Lasing was achieved at a pump threshold of approximately 15 μJ/mm2. Detailed analysis shows that the Q-factor of the optofluidic ring resonator is 3.3 × 104, which is limited by both solvent …


Reconfigurable Solid-State Dye-Doped Polymer Ring Resonator Lasers, Hengky Chandrahalim, Xudong Fan Jan 2015

Reconfigurable Solid-State Dye-Doped Polymer Ring Resonator Lasers, Hengky Chandrahalim, Xudong Fan

Faculty Publications

This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3′-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G) and 3,3′-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse …