Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Lipid Extraction From Scenedesmus Sp. Microalgae For Biodiesel Production Using Hot Compressed Hexane, Hee-Yong Shin, Jae-Hun Ryu, Seong-Youl Bae, Czarena L. Crofcheck, Mark Crocker Aug 2014

Lipid Extraction From Scenedesmus Sp. Microalgae For Biodiesel Production Using Hot Compressed Hexane, Hee-Yong Shin, Jae-Hun Ryu, Seong-Youl Bae, Czarena L. Crofcheck, Mark Crocker

Center for Applied Energy Research Faculty and Staff Publications

Lipid extraction from Scenedesmus sp. microalgae using hot compressed hexane (HCH) was investigated. Extraction performance was evaluated near the critical point of hexane and was compared with that of hexane extraction performed at room temperature and pressure, and the Bligh and Dyer extraction method. Experimental data showed that HCH significantly improves the lipid yield and rate of lipid extraction compared to the use of hexane at ambient conditions. High yields of biodiesel-convertible lipid fractions were rapidly achieved at the critical point of hexane, at a level comparable to that of the Bligh and Dyer method.


Anti-Gd2 Etoposide-Loaded Immunoliposomes For The Treatment Of Gd2 Positive Tumors, Brandon S. Brown May 2014

Anti-Gd2 Etoposide-Loaded Immunoliposomes For The Treatment Of Gd2 Positive Tumors, Brandon S. Brown

Dissertations & Theses (Open Access)

Systemic chemotherapeutics remain the standard of care for most malignancies even though they frequently suffer from narrow therapeutic index, poor serum solubility, and off-target effects. Monoclonal antibodies that specifically bind antigens overexpressed on many tumors such as the ganglioside, GD2, can be conjugated to drug-loaded liposomes to create a targeted drug delivery system. In this study, we have encapsulated etoposide, a topoisomerase inhibitor effective against a wide range of cancers, in surface modified liposomes decorated with anti-GD2 antibodies. We characterized the properties of the liposomes using a variety of methods including dynamic light scattering, electron microscopy, and Fourier transformed infrared …


The Effects Of Ocean Acidification And Eutrophication On The Growth, Lipid Composition And Toxicity Of The Marine Raphidophyte Heterosigma Akashiwo., Julia Rose Matheson Apr 2014

The Effects Of Ocean Acidification And Eutrophication On The Growth, Lipid Composition And Toxicity Of The Marine Raphidophyte Heterosigma Akashiwo., Julia Rose Matheson

Electronic Thesis and Dissertation Repository

Anthropogenic forcing, such as ocean acidification caused by rising carbon dioxide emissions, and eutrophication due to increased nutrient loadings in run-off, are causing major changes to the biogeochemistry of the oceans. As a consequence, coastal phytoplankton are susceptible to altered biogeochemical environments. This study examined the effect of a lower pH and increased levels of nutrients on the common coastal harmful alga, Heterosigma akashiwo. Growth rates, maximal cell yields, neutral lipid accumulation and toxicity of cells grown under various pH and nutrients regimes were measured. H. akashiwo growth was near maximal when grown at lower pH levels. There was …


Quantification Of Factors Governing Drug Release Kinetics From Nanoparticles: A Combined Experimental And Mechanistic Modeling Approach, Kyle Daniel Fugit Jan 2014

Quantification Of Factors Governing Drug Release Kinetics From Nanoparticles: A Combined Experimental And Mechanistic Modeling Approach, Kyle Daniel Fugit

Theses and Dissertations--Pharmacy

Advancements in nanoparticle drug delivery of anticancer agents require mathematical models capable of predicting in vivo formulation performance from in vitro characterization studies. Such models must identify and incorporate the physicochemical properties of the therapeutic agent and nanoparticle driving in vivo drug release. This work identifies these factors for two nanoparticle formulations of anticancer agents using an approach which develops mechanistic mathematical models in conjunction with experimental studies.

A non-sink ultrafiltration method was developed to monitor liposomal release kinetics of the anticancer agent topotecan. Mathematical modeling allowed simultaneous determination of drug permeability and interfacial binding to the bilayer from release …