Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 391 - 394 of 394

Full-Text Articles in Engineering

Relationships Between Muscle Contributions To Walking Subtasks And Functional Walking Status In Persons With Post-Stroke Hemiparesis, Allison Kinney, Carrie L. Peterson, Steven A. Kautz, Richard R. Neptune Aug 2010

Relationships Between Muscle Contributions To Walking Subtasks And Functional Walking Status In Persons With Post-Stroke Hemiparesis, Allison Kinney, Carrie L. Peterson, Steven A. Kautz, Richard R. Neptune

Mechanical and Aerospace Engineering Faculty Publications

Walking speed is commonly used to predict stroke severity and assess functional walking status (i.e., household, limited community and community walking status) post-stroke. The underlying mechanisms that limit walking speed (and functional walking status by extension) need to be understood to improve post-stroke rehabilitation. Previous experimental studies have shown correlations between paretic plantarflexor output during the pre-swing phase and walking speed and suggest that the paretic hip flexors can compensate in some hemiparetic subjects. Modeling and simulation studies of healthy walking have shown that the ankle plantarflexors, soleus (SOL) and gastrocnemius (GAS), and uniarticular hip flexors (IL) are essential contributors …


Development And Analysis Of A Software Package To Quantify In Vivo Polyethylene Wear After Total Hip Arthroplasty, Allison Kinney, Catherine G. Ambrose Jul 2007

Development And Analysis Of A Software Package To Quantify In Vivo Polyethylene Wear After Total Hip Arthroplasty, Allison Kinney, Catherine G. Ambrose

Mechanical and Aerospace Engineering Faculty Publications

Since the first total hip arthroplasty (THA) in 1938, THA evolved and developed into one of the major concentrations of orthopaedic research. The typical hip implant device used today incorporates a femoral and an acetabular component that serve to replicate the anatomical and mechanical functions of the natural hip joint. However, several problems exist that can effect the function of the implant device. Wear in the polyethylene liner of the acetabular component of the total hip replacement device is known as one of the major factors that affects the longevity of total hip replacement devices. Both manual and computer-aided techniques …


Fabrication Of Ankle-Foot Orthoses Using Selective Laser Sintering Technology, Allison Kinney, M. C. Faustini, Richard R. Neptune, R. H. Crawford, S. J. Stanhope Jul 2007

Fabrication Of Ankle-Foot Orthoses Using Selective Laser Sintering Technology, Allison Kinney, M. C. Faustini, Richard R. Neptune, R. H. Crawford, S. J. Stanhope

Mechanical and Aerospace Engineering Faculty Publications

Passive dynamic ankle-foot orthoses (AFOs) are often prescribed to improve gait performance for those with various neuromuscular disorders. Designs and materials used for AFOs range from simple polypropylene braces to advanced custom carbon fiber dynamic AFOs that passively store and release mechanical energy during gait. AFO designs vary in the shape and length of the foot component as well as the stiffness and length of the tibial component, depending on the desired functional outcomes. However, the current fabrication technology is not ideally suited for refined customization of AFO characteristics to optimize performance, or for rapid lowcost, high volume manufacturing and …


Microscale Investigation Of Thermo-Fluid Transport In The Transition Fil, Region Of An Evaporating Capillary Meniscus Using A Microgravity Environment, Kenneth D. Kihm, Jeffrey S. Allen, Kevin P. Hallinan, David M. Pratt Jan 2004

Microscale Investigation Of Thermo-Fluid Transport In The Transition Fil, Region Of An Evaporating Capillary Meniscus Using A Microgravity Environment, Kenneth D. Kihm, Jeffrey S. Allen, Kevin P. Hallinan, David M. Pratt

Mechanical and Aerospace Engineering Faculty Publications

In order to enhance the fundamental understanding of thin film evaporation and thereby improve the critical design concept for two-phase heat transfer devices, microscale heat and mass transport is to be investigated for the transition film region using state-of-the-art optical diagnostic techniques. By utilizing a microgravity environment, the length scales of the transition film region can be extended sufficiently, from submicron to micron, to probe and measure the microscale transport fields which are affected by intermolecular forces. Extension of the thin film dimensions under microgravity will be achieved by using a conical evaporator made of a thin silicon substrate under …