Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Vibrating Flexoelectric Micro-Beams As Angular Rate Sensors, Yilin Qu, Feng Jin, Jiashi S. Yang Aug 2022

Vibrating Flexoelectric Micro-Beams As Angular Rate Sensors, Yilin Qu, Feng Jin, Jiashi S. Yang

Department of Mechanical and Materials Engineering: Faculty Publications

We studied flexoelectrically excited/detected bending vibrations in perpendicular directions of a micro-beam spinning about its axis. A set of one-dimensional equations was derived and used in a theoretical analysis. It is shown that the Coriolis effect associated with the spin produces an electrical output proportional to the angular rate of the spin when it is small. Thus, the beam can be used as a gyroscope for angular rate sensing. Compared to conventional piezoelectric beam gyroscopes, the flexoelectric beam proposed and analyzed has a simpler structure.


Vibrating Flexoelectric Micro-Beams As Angular Rate Sensors, Yilin Qu, Feng Jin, Jiashi S. Yang Aug 2022

Vibrating Flexoelectric Micro-Beams As Angular Rate Sensors, Yilin Qu, Feng Jin, Jiashi S. Yang

Department of Mechanical and Materials Engineering: Faculty Publications

We studied flexoelectrically excited/detected bending vibrations in perpendicular directions of a micro-beam spinning about its axis. A set of one-dimensional equations was derived and used in a theoretical analysis. It is shown that the Coriolis effect associated with the spin produces an electrical output proportional to the angular rate of the spin when it is small. Thus, the beam can be used as a gyroscope for angular rate sensing. Compared to conventional piezoelectric beam gyroscopes, the flexoelectric beam proposed and analyzed has a simpler structure.


Evaluating The Effects Of Granulated Rubber And Glass Fibers In Polymer Concrete As A Structural Material For Wafer Grinding Machines, Kevin Gabriel Kuehn, Philip Randall Streeter Jun 2022

Evaluating The Effects Of Granulated Rubber And Glass Fibers In Polymer Concrete As A Structural Material For Wafer Grinding Machines, Kevin Gabriel Kuehn, Philip Randall Streeter

Materials Engineering

Polymer concrete is a composite material used to replace cast iron and steel in wafer grinding machines for vibration damping. During the grinding and lapping processes of manufacturing silicon wafers, excessive vibrations may cause subsurface damage which requires additional polishing and reduces yield. Nine compositions containing various levels of granulated rubber and glass fibers were manufactured. CRM WRF-10 granulated rubber was examined at 0%, 5%, and 10% and Corning Cem-Fil glass fibers were added at 0%, 0.5%, and 1% by weight. Smooth-On EpoxAcast 690 epoxy resin was held constant at 16% for each composition. Crushed granite aggregate from Martin Marietta, …


Structural Dynamic And Inherent Damping Characterization Of Additively Manufactured Airfoil Components, Andrew W. Goldin Mar 2020

Structural Dynamic And Inherent Damping Characterization Of Additively Manufactured Airfoil Components, Andrew W. Goldin

Theses and Dissertations

The push for low cost and higher performance/efficient turbine engines have introduced a new demand for novel technologies to improve robustness to vibrations resulting in High Cycle Fatigue (HCF). There have been many proposed solutions to this, some passive and some active. With the advent of Additive Manufacturing (AM), new damping techniques can now be incorporated directly into the design and manufacture process to suppress the vibrations that create HCF. In this study, this novel unfused pocket damping technology is applied to a blade structure and the resulting damping effectiveness is quantified. The application of this technology to complex geometries …


Think Outside The Box: New Materials, Design Application, And Performance Of Railway Turnout Bearers, Sakdirat Kaewunruen May 2014

Think Outside The Box: New Materials, Design Application, And Performance Of Railway Turnout Bearers, Sakdirat Kaewunruen

Sakdirat Kaewunruen

Railway turnout systems are a main feature in railway tracks. There are two types of turnout support structures, which can be designed to be either a slab or a cluster of discrete bearers. The choice of turnout support system depends on asset management strategy of the rail operators or maintainers. This paper will focus on the discrete turnout bearer system where turnout alignments, settlement and deformation are comparatively more flexible and retrievable by routine ballast tamping. It embraces the consideration of new materials for use as a turnout bearer. Traditional bearer materials are timber, steel, and concrete. Recent developments have …


Vibration And Buckling Of Carbon Nanotube, Graphene, And Nanowire, Mohammad Hadi Mahdavi Jan 2013

Vibration And Buckling Of Carbon Nanotube, Graphene, And Nanowire, Mohammad Hadi Mahdavi

Electronic Thesis and Dissertation Repository

Nanostructured materials with superior physical properties hold promise for the development of novel nanodevices. Full potential applications of such advanced materials require accurate characterization of their physical properties, which in turn necessitates the development of computer-based simulations along with novel experimental techniques. Since controlled experiments are difficult for nanoscale materials and atomic studies are computationally expensive, continuum mechanics-based simulations of nanomaterials and nanostructures have become the focal points of computational nano-science and materials modelling.

In this study, emphasis is given to predicting the mechanical behaviour of carbon nanotube (CNT), graphene, nanowire (NW), and nanowire encapsulated in carbon nanotube (NW@CNT), which …


Shock And Vibration Isolation System For Ambulatory And Litter Patients In Ground And Air Medical Transport, Mohamad R. Hachem May 2012

Shock And Vibration Isolation System For Ambulatory And Litter Patients In Ground And Air Medical Transport, Mohamad R. Hachem

UNLV Theses, Dissertations, Professional Papers, and Capstones

This project explored the effectiveness of seat and litter air bladder technologies in reducing patient exposure to whole body shock and vibration during ground borne and airborne medical transport. Several seat and litter air bladder configurations were examined during field tests in a U.S. Army RG-33 MRAP ambulance and a U.S. Army HH-60M Black Hawk helicopter. The MRAP field tests were conducted at Ft. Detrick, Maryland. The Black Hawk field tests were conducted at Ft. Rucker, Alabama.

During the field tests, tri-axial vibration signals were recorded on a 16-channel CoCo90 Data Logger/Frequency Analyzer and then post processed in the laboratory …


Use Of Orthogonal Arrays For Efficient Evaluation Of Geometric Designs For Reducing Vibration Of A Non-Pneumatic Wheel During High-Speed Rolling, William Rutherford Aug 2009

Use Of Orthogonal Arrays For Efficient Evaluation Of Geometric Designs For Reducing Vibration Of A Non-Pneumatic Wheel During High-Speed Rolling, William Rutherford

All Theses

During high speed rolling of a non-pneumatic wheel, vibration may be produced by the interaction of collapsible spokes with a shear deformable ring as they enter the contact region, buckle and then snap back into a state of tension. In the present work, a 2D planar finite element model with geometric nonlinearity and explicit time-stepping is used to simulate rolling of the non-pneumatic wheel. Vibration characteristics are measured from the FFT frequency spectrum of the time-signals of perpendicular distance of marker nodes from the virtual plane of the spoke, thickness change in the ring between spokes, and ground reaction forces. …


Dynamic Finite Element Simulation Of Ultrasonic Consolidation, Daniel Mccullough Aug 2009

Dynamic Finite Element Simulation Of Ultrasonic Consolidation, Daniel Mccullough

All Theses

Ultrasonic Consolidation (UC) is a promising solid state rapid manufacturing process that provides the ability to create functional, multilayered, and often geometrically complex parts. This thesis seeks to address one of the primary obstacles faced when using the process, namely the apparent build height limit encountered when using UC to construct high aspect ratio specimens. A fully transient, three dimensional Finite Element model is created to study the dynamic behavior of an ultrasonically consolidated part during the UC process. The model is used to find the cause of bond failure at the build height limit and a potential way to …


Placement Of Piezoelectric Actuators For Active Control Of Vibration Using Modal Parameters, Xuegeng Zhu Jan 1998

Placement Of Piezoelectric Actuators For Active Control Of Vibration Using Modal Parameters, Xuegeng Zhu

Mechanical & Aerospace Engineering Theses & Dissertations

An equation is derived to model the piezoelectric actuators incorporation with flexible structures. This equation permits the comparison of the performance indices over the entire structure for a piezoelectric actuator with constant area, which is unachievable if the Finite Element Method is used for complicated structures.

An index has been developed for placement of piezoelectric actuator for control of vibration of a flexible structure. This index is derived from the definition of H2norm. Computation of the proposed index requires only the natural frequencies and corresponding mode shapes of the structures of interest. The method is well suited to large …