Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Energy Systems

2016

Institution
Keyword
Publication
Publication Type
File Type

Articles 31 - 60 of 239

Full-Text Articles in Engineering

A Fast Model For The Simulation Of External Gear Pumps, Zechao Lu, Xinran Zhao, Andrea Vacca Aug 2016

A Fast Model For The Simulation Of External Gear Pumps, Zechao Lu, Xinran Zhao, Andrea Vacca

The Summer Undergraduate Research Fellowship (SURF) Symposium

External gear pump is an important category of positive displacement fluid machines used to perform the mechanical–hydraulic energy conversions in many fluid power applications. An efficient numerical simulation program is needed to simulate the system in order to provide a direction for design purpose. The model consists of a lumped parameter fluid dynamic model and a model that simulates the radial micro-motions of the gear’s axes of rotation. The system consists of a set of ordinary differential equations related to the conservation on mass of the internal control volumes of the pump, which are given by the tooth space volumes …


Dynamic Behavior Of A Clamped-Clamped Bi-Stable Laminate For Energy Harvesting, Ajay V. Kumar, Andres F. Arrieta Ph.D., Myungwon Hwang Aug 2016

Dynamic Behavior Of A Clamped-Clamped Bi-Stable Laminate For Energy Harvesting, Ajay V. Kumar, Andres F. Arrieta Ph.D., Myungwon Hwang

The Summer Undergraduate Research Fellowship (SURF) Symposium

Multi-stable laminates have many applications in morphing structures, energy harvesting devices, and metamaterials due to the specific characteristics attributed to the exhibited stable states. Changes between stable states allow for large deflections, on-demand variation of the stiffness of compliant structures embedded within these elements, and control of effective dynamic properties in periodic lattices. These changes in state can be accessed via a snap-through instability triggered by introducing a well-defined activation energy. The resulting oscillations could enable broadband energy harvesting via piezoelectric transduction and resistive circuits. In this paper, a clamped-clamped bi-stable laminate is studied to understand the behavior of the …


Energy Information Augmented Community-Based Energy Reduction, Kevin P. Hallinan, Harvey Enns, Stephenie Ritchey, Phil Brodrick, Nathan Lammers, Nichole Hanus, Mark Rembert, Tony Rainsberger Aug 2016

Energy Information Augmented Community-Based Energy Reduction, Kevin P. Hallinan, Harvey Enns, Stephenie Ritchey, Phil Brodrick, Nathan Lammers, Nichole Hanus, Mark Rembert, Tony Rainsberger

Harvey Enns

More than one-half of all U.S. states have instituted energy efficiency mandates requiring utilities to reduce energy use. To achieve these goals, utilities have been permitted rate structures to help them incentivize energy reduction projects. This strategy is proving to be only modestly successful in stemming energy consumption growth. By the same token, community energy reduction programs have achieved moderate to very significant energy reduction. The research described here offers an important tool to strengthen the community energy reduction efforts—by providing such efforts energy information tailored to the energy use patterns of each building occupant. The information provided most importantly …


Parametric And Design Analysis On Thermoelectric Generators, Shouyuan Huang Aug 2016

Parametric And Design Analysis On Thermoelectric Generators, Shouyuan Huang

Open Access Theses

In facing the limited energy source reserves and environmental problems, thermoelectric generators (TEGs) are one of the promising waste heat recovery systems. The modern TEGs for exhaust stream (e.g. from automobiles) can improve the fuel economy by around 5%, taking advantage of the recent developed thermoelectric (TE) materials.

In this work, we aimed at designing a TEG as an add-on module for a gas-phase heat exchanger with maximized power output, and without negative impact (e.g. maintaining a minimum heat dissipation rate from the hot side). We first developed a parametric optimization algorithm using response surface method (RSM) and genetic algorithm …


Thermoelectric Material Property Measurement For Flexible Films, Courtney Hollar Aug 2016

Thermoelectric Material Property Measurement For Flexible Films, Courtney Hollar

Boise State University Theses and Dissertations

The market for wearable electronics and implantable medical devices continues to grow. Within the next several years, the wearable electronic and implantable medical devices market will reach $31.2 billion and $73.9 billion, respectively. Currently, the most commonly used power source is the rigid lithium ion battery. In order to further optimize the devices, flexible autonomous power sources, such as thermoelectric generators, can replace traditional battery systems.

Flexible thermoelectric films were created using a wet deposition approach and synthesized into ink suitable for either spin coating or screen printing. This study focuses on Seebeck coefficient, electrical conductivity, and thermal conductivity measurements. …


Florida Rural Small Business Energy Assistance Collaborative Cumulative Report Ending July 31, 2016, Florida Solar Energy Center, Janet Mcilvaine Jul 2016

Florida Rural Small Business Energy Assistance Collaborative Cumulative Report Ending July 31, 2016, Florida Solar Energy Center, Janet Mcilvaine

FSEC Energy Research Center®

The U.S. Department of Agriculture's (USDA) Rural Development initiative reaches out to communities across America with many programs (http://www.rd.usda.gov/programs-services/all-programs). USDA's Rural Energy for America Program (REAP) offers grants and loan guarantees for energy efficiency improvements and renewable energy systems to agriculture operations and qualifying rural small businesses. USDA has awarded the University of Central Florida a grant to provide a limited number of subsidized Energy Audits to eligible businesses in Florida in support of USDA Rural Development (USDA-RD) Grant and Loan programs for rural small businesses. The ultimate goal of the energy audits is to increase participation in …


Cost Effectiveness Of Energy Efficiency And On-Site Photovoltaic Power For 2015 Iecc Energy Rating Index (Eri) Compliance (Draft), Florida Solar Energy Center, Philip Fairey Jul 2016

Cost Effectiveness Of Energy Efficiency And On-Site Photovoltaic Power For 2015 Iecc Energy Rating Index (Eri) Compliance (Draft), Florida Solar Energy Center, Philip Fairey

FSEC Energy Research Center®

EnergyGauge® USA v.5.1 is used to simulate the energy use of one-story, three-bedroom, 2000 ft2 , single-family, frame homes in sixteen representative U.S. climates comprising all eight IECC climate zones. The energy use of the Section R406.2 minimum efficiency home (the Baseline Home) is compared against the energy use of homes complying with the prescriptive requirements of Section R402 of the 2015 IECC and against homes complying with the Section R406 Energy Rating Index (ERI) Compliance Alternative. The improvement cost and energy savings of the improved homes relative to the Baseline Home are then used to determine the cost …


Wind Farm Wake Modeling And Analysis Of Wake Impacts In A Wind Farm, Yujia Hao Jul 2016

Wind Farm Wake Modeling And Analysis Of Wake Impacts In A Wind Farm, Yujia Hao

Doctoral Dissertations

More and more wind turbines have been grouped in the same location during the last decades to take the advantage of profitable wind resources and reduced maintenance cost. However wind turbines located in a wind farm are subject to a wind field that is substantially modified compared to the ambient wind field due to wake effects. The wake results in a reduced power production, increased load variation on the waked turbine, and reduced wake farm efficiency. Therefore the wake has long been an important concern for the wind farm installation, maintenance, and control. Thus a wake simulation tool is required. …


Microscale Investigation Of Thermo-Fluid Transport In The Transition Fil, Region Of An Evaporating Capillary Meniscus Using A Microgravity Environment, Kenneth D. Kihm, Jeffrey S. Allen, Kevin P. Hallinan, David M. Pratt Jul 2016

Microscale Investigation Of Thermo-Fluid Transport In The Transition Fil, Region Of An Evaporating Capillary Meniscus Using A Microgravity Environment, Kenneth D. Kihm, Jeffrey S. Allen, Kevin P. Hallinan, David M. Pratt

Kevin Hallinan

In order to enhance the fundamental understanding of thin film evaporation and thereby improve the critical design concept for two-phase heat transfer devices, microscale heat and mass transport is to be investigated for the transition film region using state-of-the-art optical diagnostic techniques. By utilizing a microgravity environment, the length scales of the transition film region can be extended sufficiently, from submicron to micron, to probe and measure the microscale transport fields which are affected by intermolecular forces. Extension of the thin film dimensions under microgravity will be achieved by using a conical evaporator made of a thin silicon substrate under …


Nanocharacterization Of Bio-Silica Using Atomic Force And Ultrasonic Force Microscopy, Vinaypreet S. Gill, Kevin P. Hallinan, N. S. Brar Jul 2016

Nanocharacterization Of Bio-Silica Using Atomic Force And Ultrasonic Force Microscopy, Vinaypreet S. Gill, Kevin P. Hallinan, N. S. Brar

Kevin Hallinan

Nanotechnology has become central to our research efforts to fabricate relatively smaller size devices, which are more versatile than their older and larger predecessors. Silica is a very important material in this regard. Recently, a new biomimetically inspired path to silica production has been demonstrated. This processing technique was inspired from biological organisms, such as marine diatoms, which produce silica at ambient conditions and almost neutral ph with beautiful control over location and structure. Recently, several researchers have demonstrated that positional control of silica formed could be achieved by application of an electric field to locate charged enzymes responsible for …


Leveraging Students’ Passion And Creativity: Ethos At The University Of Dayton, Margaret Pinnell, Malcolm Daniels, Kevin P. Hallinan, Gretchen Berkemeier Jul 2016

Leveraging Students’ Passion And Creativity: Ethos At The University Of Dayton, Margaret Pinnell, Malcolm Daniels, Kevin P. Hallinan, Gretchen Berkemeier

Kevin Hallinan

The Engineers in Technical Humanitarian Opportunities of Service-learning (ETHOS) program was developed in the spring of 2001 by an interdisciplinary group (electrical, chemical, civil and mechanical) of undergraduate engineering students at the University of Dayton (UD). ETHOS was founded on the belief that engineers are more apt and capable to appropriately serve our world if they have an understanding of technology’s global linkage with values, culture, society, politics, and the economy. Since 2001, the ETHOS program at UD has grown and changed. From conceptualization, to implementation, to maturation and national recognition, the program has addressed challenges of academic acceptance, programmatic …


Experimental Verification Of Source Temperature Modulation Via A Thermal Switch In Thermal Energy Harvesting, Robin Mccarty, D. Monaghan, Kevin P. Hallinan, Brian Sanders Jul 2016

Experimental Verification Of Source Temperature Modulation Via A Thermal Switch In Thermal Energy Harvesting, Robin Mccarty, D. Monaghan, Kevin P. Hallinan, Brian Sanders

Kevin Hallinan

This paper provides a description of research seeking to experimentally verify the effectiveness of a thermal switch used in series with TE devices for waste heat recovery for constant and variable source heat input and for variable source thermal capacitance (mass). Using an experimental set-up comprised serially of a fixed heat source, a variable thermal resistance air gap serving as a thermal switch, a thermoelectric device and a heat sink, the time-averaged power output to power input ratios improved up to 15% and 30% respectively for constant and variable heat input in certain design space conditions. The experimental results, as …


Industrial Solid-State Energy Harvesting: Mechanisms And Examples, Matthew Kocoloski, Carl Eger, Robin Mccarty, Kevin P. Hallinan, J. Kelly Kissock Jul 2016

Industrial Solid-State Energy Harvesting: Mechanisms And Examples, Matthew Kocoloski, Carl Eger, Robin Mccarty, Kevin P. Hallinan, J. Kelly Kissock

Kevin Hallinan

This paper explores the potential for solid-state energy harvesting in industrial applications. In contrast to traditional heat recovery, the output of solid-state devices is electricity, which can be readily used in virtually any plant. The progress in harvesting waste heat via thermoelectric and thermionic generators is described. With second law efficiencies now approaching 50% and 80% respectively, we show that these technologies are on the cusp of practical use. Finally, we present an example of energy harvesting using thermionic devices in an industrial application. The example considers energy harvesting from a furnace at a glass manufacturing facility where exhaust gases …


Energy Information Augmented Community-Based Energy Reduction, Kevin P. Hallinan, Harvey Enns, Stephenie Ritchey, Phil Brodrick, Nathan Lammers, Nichole Hanus, Mark Rembert, Tony Rainsberger Jul 2016

Energy Information Augmented Community-Based Energy Reduction, Kevin P. Hallinan, Harvey Enns, Stephenie Ritchey, Phil Brodrick, Nathan Lammers, Nichole Hanus, Mark Rembert, Tony Rainsberger

Kevin Hallinan

More than one-half of all U.S. states have instituted energy efficiency mandates requiring utilities to reduce energy use. To achieve these goals, utilities have been permitted rate structures to help them incentivize energy reduction projects. This strategy is proving to be only modestly successful in stemming energy consumption growth. By the same token, community energy reduction programs have achieved moderate to very significant energy reduction. The research described here offers an important tool to strengthen the community energy reduction efforts—by providing such efforts energy information tailored to the energy use patterns of each building occupant. The information provided most importantly …


Electro-Hydrodynamic Pumped Hydraulic Actuation With Application To Active Vibration Control, Ahmad Reza Kashani, Sung Kang, Kevin P. Hallinan Jul 2016

Electro-Hydrodynamic Pumped Hydraulic Actuation With Application To Active Vibration Control, Ahmad Reza Kashani, Sung Kang, Kevin P. Hallinan

Kevin Hallinan

A new type of actuation device has been conceptualized that meets the needs of both large displacement, force and bandwidth within a package more compact than currently available magnetostrictive and stack-type piezoelectric actuators of similar rating. This concept relies on micro-scale electrohydrodynamic (EHD) pumping of a dielectric liquid within small channels. Configured as an actuator, the EHD pump(s) would be used to move fluid between two reservoirs—each having a compliant membrane that interfaces to the world to provide the means to achieve vibration cancellation or micro actuation. Ordinarily limited to generating flow in macroscale applications, the EHD pump, when operating …


A Study Of The Fundamental Operations Of A Capillary Driven Heat Transfer Device In Both Normal And Low Gravity Part 1-Liquid Slug Formation In Low Gravity, Jeffrey S. Allen, Kevin P. Hallinan, Jack Lekan Jul 2016

A Study Of The Fundamental Operations Of A Capillary Driven Heat Transfer Device In Both Normal And Low Gravity Part 1-Liquid Slug Formation In Low Gravity, Jeffrey S. Allen, Kevin P. Hallinan, Jack Lekan

Kevin Hallinan

Research has been conducted to observe the operation of a capillary pumped loop (CPL) in both normal and low gravity environments in order to ascertain the causes of device failure. The failures of capillary pumped heat transport devices in low gravity; specifically; evaporator dryout, are not understood and the available data for analyzing the failures is incomplete. To observe failure in these devices an idealized experimental CPL was configured for testing in both a normal-gravity and a low-gravity environment. The experimental test loop was constructed completely of Pyrex tubing to allow for visualization of system operations. Heat was added to …


Clean Energy Infrastructure Educational Initiative, Kevin P. Hallinan, James A. Menart, Robert Gilbert Jul 2016

Clean Energy Infrastructure Educational Initiative, Kevin P. Hallinan, James A. Menart, Robert Gilbert

Kevin Hallinan

The Clean Energy Infrastructure Educational Initiative represents a collaborative effort by the University of Dayton, Wright State University and Sinclair Community College. This effort above all aimed to establish energy related programs at each of the universities while also providing outreach to the local, state-wide, and national communities. At the University of Dayton, the grant has aimed at: solidfying a newly created Master's program in Renewable and Clean Energy; helping to establish and staff a regional sustainability organization for SW Ohio. As well, as the prime grantee, the University of Dayton was responsible for ensuring curricular sharing between WSU and …


Wake Character In The Wind Turbine Array: (Dis-)Organization, Spatial And Dynamic Evolution And Low-Dimensional Modeling, Nicholas Michael Hamilton Jul 2016

Wake Character In The Wind Turbine Array: (Dis-)Organization, Spatial And Dynamic Evolution And Low-Dimensional Modeling, Nicholas Michael Hamilton

Dissertations and Theses

To maximize the effectiveness of the rapidly increasing capacity of installed wind energy resources, new models must be developed that are capable of more nuanced control of each wind turbine so that each device is more responsive to inflow events. Models used to plan wind turbine arrays and control behavior of devices within the farm currently make questionable estimates of the incoming atmospheric flow and update turbine configurations infrequently. As a result, wind turbines often operate at diminished capacities, especially in arrays where wind turbine wakes interact and inflow conditions are far from ideal. New turbine control and wake prediction …


Go With The Flow –Thermoelectric Energy, Shawn Bell Jul 2016

Go With The Flow –Thermoelectric Energy, Shawn Bell

Middle School Lesson Plans

In this unit, students will learn how thermal energy be transferred and transformed. They will carry out investigations to gather evidence to support an explanation about direct conversion of heat into electrical energy. They will develop a model that shows the components of the system and changes in the system being investigated, and they will use evidence from the investigation to construct an explanation for how the energy flows.


2015 Electric Vehicle Market Summary And Barriers, Florida Solar Energy Center, David Block Jun 2016

2015 Electric Vehicle Market Summary And Barriers, Florida Solar Energy Center, David Block

FSEC Energy Research Center®

The object of this research report is to present the current market status of plug-in-electric vehicles (PEVs) and to predict their future penetration within the world and U.S. markets. The sales values for 2015 show that China leads in yearly sales at 214,283 (triple increase for 2014) followed by Western Europe at 184,500 vehicles sold. The U.S. is third at 115,262 followed by Japan at 46,339 vehicles. These four countries comprise 95% of the global sales market. The world total of EV sales for 2015 is estimated to be 565,668 up from 315,519 in 2014. This data also shows that …


The Effect Of Mesh-Type Bubble Breakers On Two-Phase Vertical Co-Flow, Alan Kalbfleisch Jun 2016

The Effect Of Mesh-Type Bubble Breakers On Two-Phase Vertical Co-Flow, Alan Kalbfleisch

Electronic Thesis and Dissertation Repository

It is proposed that mesh-type bubble breakers can be used in two-phase gas-liquid vertical cocurrent pipe flow to enhance the heat and mass transfer rates. Two experimental studies were performed to investigate the effect of mesh-type bubble breakers with varying geometries on two-phase flow behaviour. The first used highspeed imaging to measure bubble size and observe the resulting flow regime for two-phase vertical co-flow consisting of air and water. A Froude number correlation that can be used to predict the bubble size generated by mesh-type bubble breakers is proposed. Flow regime maps for two-phase flow in the presence of bubble …


Significance Of Parameters Affecting The Performance Of A Passive Down-Draft Evaporative Cooling (Pdec) Tower With A Spray System, Daeho Kang, Richard K. Strand Jun 2016

Significance Of Parameters Affecting The Performance Of A Passive Down-Draft Evaporative Cooling (Pdec) Tower With A Spray System, Daeho Kang, Richard K. Strand

Publications and Research

PDEC towers with spray systems are known to achieve substantial energy savings. Various parameters such as the wet-bulb depression, the tower height, and the wind speed have been known to be key factors affecting the performance of the system. To date, the significance of these parameters and other important factors have not been adequately treated in the literature. There also has been a lack of models that can successfully investigate potential benefits of the system under various conditions where this particular system could be applicable. To address these critical issues, this study performed a parametric analysis by using a FLUENT …


Prosthetic Socket Cooling System, Benjamin K. Kraw, Kathy Ha, Derek Piastrelli, Cuong Lai Jun 2016

Prosthetic Socket Cooling System, Benjamin K. Kraw, Kathy Ha, Derek Piastrelli, Cuong Lai

Mechanical Engineering

A team of four senior-level undergraduate students in the Interdisciplinary Senior Project Design course in the Engineering Department of California Polytechnic State University: San Luis Obispo have worked to develop a prosthetic socket cooling system, namely for veteran Taylor Morris and exclusively for a transfemoral prosthetic socket, under the Quality of Life+ Laboratory. This cooling system will utilize the thermoelectric effect known as the Peltier effect to transmit heat generated from the residual limb to the surrounding environment by means of forced convection over small aluminum heat sinks. Two measurement devices have also been developed to, one, measure the heat …


Me 350 Air Conditioning Experiment, Joshua Baida, Ellie Hallner, Tyler Eschenbach Jun 2016

Me 350 Air Conditioning Experiment, Joshua Baida, Ellie Hallner, Tyler Eschenbach

Mechanical Engineering

In keeping with Cal Poly's focus on physically applying the concepts learned in the classroom, our team of engineering students has compiled a laboratory experiment displaying the basic thermodynamic cycle found in air conditioning systems. This vapor compression cycle is displayed on a visualization board that features all four major components of the system: the compressor, the evaporator, the condenser, and the throttling valve. Students will take measurements of temperature and pressure at each stage in the cycle and also gauge the power draw from the compressor to gain an understanding of how performance and electricity cost come into play …


Gasoline Confined In Nano-Porous Media, Matthew Giso Jun 2016

Gasoline Confined In Nano-Porous Media, Matthew Giso

Honors Theses

The heat of combustion was determined for gasoline confined in nano-porous media of differing pore size by bomb calorimetry. The heat of combustion of the confined fuels was comparable to that of bulk within the experimental uncertainty. This suggests that all of the confined fuel burns without any flame quenching and no chemical interactions at the interface between pore walls and fuel mitigate combustion.


Disc Brake Energy Conversion, D. Coleman Badgley, Jeffrey W. Powell Jun 2016

Disc Brake Energy Conversion, D. Coleman Badgley, Jeffrey W. Powell

Mechanical Engineering

The original goal of this project was to complete the design and building of a disc brake energy conversion project started by a former senior project team, and then spend a majority of the year performing testing in order to see if the device could be used to accurately calculate the Joule's constant. However, due to unforeseen complications and obstacles, the design and manufacturing portion of the project ended up taking much longer than anticipated. A majority of this time was spent designing the hydraulic plumbing system that would actuate the brakes. The previous team purchased some hydraulic parts and …


Fluid Analysis In Solar Heat Pipes, Ben Krumholz, Michael Agavo, William Dundon Jun 2016

Fluid Analysis In Solar Heat Pipes, Ben Krumholz, Michael Agavo, William Dundon

Mechanical Engineering

Evacuated tube solar collectors are efficient systems that use heat pipes to facilitate heat transfer. They use incoming solar radiation to heat water. Professor Mason Medizade tasked the team with choosing a component of the system to research and test its influence on system performance. The team investigated the working fluid that runs through the heat pipes. Distilled water, acetone, and ethanol at a range of fill volumes form 1 mL to 11 mL were tested. The team's goal was to find a volume for each fluid to maximize performance of the system. Performance was defined as average temperature rise …


Heat Of Fusion Of Primary Alcohol Confined In Nanopores, Harrisonn Griffin Jun 2016

Heat Of Fusion Of Primary Alcohol Confined In Nanopores, Harrisonn Griffin

Honors Theses

Melting behavior of physically confined 1-decanol in nano porous silica was probed using a Differential Scanning Calorimeter (DSC). In agreement with the Gibbs-Thomson prediction, we observe that the melting temperature of the confined 1-decanol scales inversely with the physical size of the pores. Contrary to the assumption used in developing the Gibbs-Thomson equation, however, the apparent heat of fusion decreases as the pore size decreases. Previously, several models have been proposed where interfacial layers of molecules do not participate in the phase transition and thereby would not contribute to the heat of fusion. While these could reconcile the seeming contradiction, …


How Can Occupancy Modeling And Occupancy Sensors Reduce Energy Usage In Academic Buildings: An Application Approach To University Of San Francisco, Paloma R. Duong May 2016

How Can Occupancy Modeling And Occupancy Sensors Reduce Energy Usage In Academic Buildings: An Application Approach To University Of San Francisco, Paloma R. Duong

Master's Projects and Capstones

Buildings are amongst the highest energy consumers relative to industry and transportation. They account for 40% of the world’s energy consumption, due to the need for lighting, equipment, heating, cooling and ventilation. Academic buildings are multi-purpose buildings that create a challenge on energy reduction. Most are old and have fixed occupancy schedules, resulting in high energy consumption because these buildings experience significant occupancy variation throughout the day. Five academic buildings were analyzed; their building information, energy consumption data and methods to project energy savings have been analyzed. The case studies presented different strategies on predicting energy savings, but these have …


Energy Models Of The Txaire Houses, Tajudeen Amadu Annafi May 2016

Energy Models Of The Txaire Houses, Tajudeen Amadu Annafi

Mechanical Engineering Theses

Model calibration is important as its functions improve building models. A calibrated model of the TxAIRE Houses #1 and #2 have been developed using the OpenStudio software. The model was developed and calibrated with data of the year 2014 but can be used predict electricity consumption of any year.

An actual meteorological year (AMY) weather file was also created for the houses which was used for calibration. The data used to develop this weather file were measured on-site which improved the accuracy of the model. It was found that an error difference of -1.0 % and -4.2 % occurred between …