Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Characterization Of Highly Doped N-Type And P-Type Silicon Carbide Ohmic Contacts, Tanner Rice Dec 2023

Characterization Of Highly Doped N-Type And P-Type Silicon Carbide Ohmic Contacts, Tanner Rice

Graduate Theses and Dissertations

Silicon Carbide (SiC) is a rather new material that possesses unparalleled properties when compared to Silicon. Due to its larger band gap alongside other thermal properties, SiC can survive in hotter, more radiation intensive environments, whether that be within the crust of the earth or in the reaches of space. As a desirable semiconductor for these applications, CMOS is an especially important device due to its low power consumption. However, creating a good contact between the metal and semiconductor optimally requires two different metals for the n -type and the p-type semiconductor. This greatly increases the processing time, as separate …


Fabrication Of Black Phosphorus Terahertz Photoconductive Antennas, Nathan Tanner Sawyers May 2023

Fabrication Of Black Phosphorus Terahertz Photoconductive Antennas, Nathan Tanner Sawyers

Physics Undergraduate Honors Theses

Terahertz (THz) photoconductive antennas (PCAs) using 40nm thin-film flakes of black phosphorus (BP) and hexagonal boron nitride (hBN) have been shown computationally to be capable of THz emission comparable to those based on GaAs [2]. In this paper, I briefly describe the scientific and practical interest in THz emissions and explain what warrants research into black phosphorus as a photoconductive semiconductor in THz devices. Furthermore, I outline the basic principle of how these antennas work and mention alternative designs produced by other researchers in the past. Finally, I summarize the fabrication process of these antennas, as well as the measurements …


Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi Dec 2022

Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi

Graduate Theses and Dissertations

This work focuses on the investigation of gate-defined quantum dots in two-dimensional transition metal dichalcogenide tungsten diselenide (WSe2) as a means to unravel mesoscopic physical phenomena such as valley-contrasting physics in WSe2 flakes and its potential application as qubit, as well as realizing gate-controlled quantum dots based on elementaltellurium nanostructures which may unlock the topological nature of the host material carriers such as Weyl states in tellurium nanowires.The fabrication and characterization of gate-defined hole quantum dots in monolayer and bilayer WSe2 are reported. The gate electrodes in the device design are located above and below the WSe2 nanoflakes to accumulate …


Tailoring Interfaces And Composition For Stable And Efficient Perovskite Solar Cells, Hamza Javaid Feb 2022

Tailoring Interfaces And Composition For Stable And Efficient Perovskite Solar Cells, Hamza Javaid

Doctoral Dissertations

Metal halide perovskite solar cells (PSCs) have revolutionized the field of thin film photovoltaics. Within a decade, the power conversion efficiencies (PCEs) have increased at a phenomenal rate, rising from 3.8% to more than 25% in single-junction devices, moving them ahead of the current silicon-based technology. The high efficiencies of perovskite solar cells (PSCs) and their other unique properties arise from a combination of organic and inorganic components and electronic-ionic conduction, making them excellent candidates for a plethora of applications. However, PSCs face a significant—and ironic—roadblock to commercialization: these light-harvesting materials degrade under sunlight—the very condition they would need …


Design And Characterization Of Standard Cell Library Using Finfets, Phanindra Datta Sadhu Jun 2021

Design And Characterization Of Standard Cell Library Using Finfets, Phanindra Datta Sadhu

Master's Theses

The processors and digital circuits designed today contain billions of transistors on a small piece of silicon. As devices are becoming smaller, slimmer, faster, and more efficient, the transistors also have to keep up with the demands and needs of the daily user. Unfortunately, the CMOS technology has reached its limit and cannot be used to scale down due to the transistor's breakdown caused by short channel effects. An alternative solution to this is the FinFET transistor technology, where the gate of the transistor is a three dimensional fin that surrounds the transistor and prevents the breakdown caused by scaling …


Si-Based Germanium Tin Photodetectors For Infrared Imaging And High-Speed Detection, Huong Tran May 2021

Si-Based Germanium Tin Photodetectors For Infrared Imaging And High-Speed Detection, Huong Tran

Graduate Theses and Dissertations

Infrared (IR) radiation spans the wavelengths of the windows: (1) near-IR region ranging from 0.8 to 1.0 μm, (2) shortwave IR (SWIR) ranging from 1.0 to 3.0 μm, (3) mid-wave IR (MWIR) region covering from 3.0 to 5.0 μm, (4) longwave IR (LWIR) spanning from 8.0 to 12.0 μm, and (5) very longwave IR extending beyond 12.0 μm. The MWIR and LWIR regions are important for night vision in the military, and since the atmosphere does not absorb at these wavelengths, they are also used for free-space communications and astronomy. Automotive and defect detection in the food industry and electronic …


The Impact Of Quantum Size Effects On Thermoelectric Performance In Semiconductor Nanostructures, Adithya Kommini Mar 2017

The Impact Of Quantum Size Effects On Thermoelectric Performance In Semiconductor Nanostructures, Adithya Kommini

Masters Theses

An increasing need for effective thermal sensors, together with dwindling energy resources, have created renewed interests in thermoelectric (TE), or solid-state, energy conversion and refrigeration using semiconductor-based nanostructures. Effective control of electron and phonon transport due to confinement, interface, and quantum effects has made nanostructures a good way to achieve more efficient thermoelectric energy conversion. This thesis studies the two well-known approaches: confinement and energy filtering, and implements improvements to achieve higher thermoelectric performance. The effect of confinement is evaluated using a 2D material with a gate and utilizing the features in the density of states. In addition to that, …


High-Temperature Ferromagnetism In Transition Metal Implanted Wide-Bandgap Semiconductors, Jeremy A. Raley Jun 2005

High-Temperature Ferromagnetism In Transition Metal Implanted Wide-Bandgap Semiconductors, Jeremy A. Raley

Theses and Dissertations

Material with both semiconductor and magnetic properties, which is commonly called a dilute magnetic semiconductor (DMS), will prove most useful in the fabrication of spintronic devices. In order to produce a DMS at above room temperature, transition metals (TMs) were implanted into host semiconductors of p-GaN, Al0.35Ga0.65N, or ZnO. Magnetic hysteresis measurements using a superconducting quantum interference device (SQUID) magnetometer show that some of the material combinations clearly exhibit ferromagnetism above room temperature. The most promising materials for creating spintronic devices using ion implantation are p-GaN:Mn, Al0.35Ga0.65N:Cr, and Fe-implanted ZnO nanotips on …


Quantum Mechanical Calculations Of Monoxides Of Silicon Carbide Molecules, John W. Roberts Jr. Mar 2003

Quantum Mechanical Calculations Of Monoxides Of Silicon Carbide Molecules, John W. Roberts Jr.

Theses and Dissertations

Modern semiconductor devices are principally made using the element silicon. In recent years, silicon carbide (SiC), with its wide band-gap, high thermal conductivity, and radiation resistance, has shown prospects as a semiconductor material for use in high temperature and radiation environments such as jet engines and satellites. A limiting factor in the performance of many SiC semiconductor components is the presence of lattice defects formed at oxide dielectric junctions during processing. Recent theoretical work has used small quantum mechanical systems embedded in larger molecular mechanics structures to attempt to better understand SiC surfaces and bulk materials and their oxidation. This …