Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

On Improving Robustness Of Hardware Security Primitives And Resistance To Reverse Engineering Attacks, Vinay C. Patil Oct 2021

On Improving Robustness Of Hardware Security Primitives And Resistance To Reverse Engineering Attacks, Vinay C. Patil

Doctoral Dissertations

The continued growth of information technology (IT) industry and proliferation of interconnected devices has aggravated the problem of ensuring security and necessitated the need for novel, robust solutions. Physically unclonable functions (PUFs) have emerged as promising secure hardware primitives that can utilize the disorder introduced during manufacturing process to generate unique keys. They can be utilized as \textit{lightweight} roots-of-trust for use in authentication and key generation systems. Unlike insecure non-volatile memory (NVM) based key storage systems, PUFs provide an advantage -- no party, including the manufacturer, should be able to replicate the physical disorder and thus, effectively clone the PUF. …


Nanostructured Semiconductor Device Design In Solar Cells, Hongmei Dang Jan 2015

Nanostructured Semiconductor Device Design In Solar Cells, Hongmei Dang

Theses and Dissertations--Electrical and Computer Engineering

We demonstrate the use of embedded CdS nanowires in improving spectral transmission loss and the low mechanical and electrical robustness of planar CdS window layer and thus enhancing the quantum efficiency and the reliability of the CdS-CdTe solar cells. CdS nanowire window layer enables light transmission gain at 300nm-550nm. A nearly ideal spectral response of quantum efficiency at a wide spectrum range provides an evidence for improving light transmission in the window layer and enhancing absorption and carrier generation in absorber. Nanowire CdS/CdTe solar cells with Cu/graphite/silver paste as back contacts, on SnO2/ITO-soda lime glass substrates, yield the …


A Reliability Prediction Method For Phase-Change Devices Using Optimized Pulse Conditions, Martin Jared Barclay May 2014

A Reliability Prediction Method For Phase-Change Devices Using Optimized Pulse Conditions, Martin Jared Barclay

Boise State University Theses and Dissertations

Owing to the outstanding device characteristics of Phase-Change Random Access Memory (PCRAM) such as high scalability, high speed, good cycling endurance, and compatibility with conventional complementary metal-oxide-semiconductor (CMOS) processes, PCRAM has reached the point of volume production. However, due to the temperature dependent nature of the phase-change memory device material and the high electrical and thermal stresses applied during the programming operation, the standard methods of high-temperature (Temperature > 125 °C) accelerated retention testing may not be able to accurately predict bit sensing failures or determine slight pulse condition changes needed if the device were to be …


Electron – Phonon Interaction In Multiple Channel Gan Based Hfets: Heat Management Optimization, Romualdo A. Ferreyra Jan 2014

Electron – Phonon Interaction In Multiple Channel Gan Based Hfets: Heat Management Optimization, Romualdo A. Ferreyra

Theses and Dissertations

New power applications for managing increasingly higher power levels require that more heat be removed from the power transistor channel. Conventional treatments for heat dissipation do not take into account the conversion of excess electron energy into longitudinal optical (LO) phonons, whose associated heat is stored in the channel unless such LO phonons decay into longitudinal acoustic (LA) phonons via a Ridley path. A two dimensional electron gas (2DEG) density of ~5×1012cm-2 in the channel results in a strong plasmon–LO phonon coupling (resonance) and a minimum LO phonon lifetime is experimentally observed, implying fast heat removal from …


Reliability Analysis Of Nanocrystal Embedded High-K Nonvolatile Memories, Chia-Han Yang Dec 2011

Reliability Analysis Of Nanocrystal Embedded High-K Nonvolatile Memories, Chia-Han Yang

Doctoral Dissertations

The evolution of the MOSFET technology has been driven by the aggressive shrinkage of the device size to improve the device performance and to increase the circuit density. Currently, many research demonstrated that the continuous polycrystalline silicon film in the floating-gate dielectric could be replaced with nanocrystal (nc) embedded high-k thin film to minimize the charge loss due to the defective thin tunnel dielectric layer.

This research deals with both the statistical aspect of reliability and electrical aspect of reliability characterization as well. In this study, the Zr-doped HfO2 (ZrHfO) high-k MOS capacitors, which separately contain the nanocrystalline zinc …


Advanced Thermosonic Wire Bonding Using High Frequency Ultrasonic Power: Optimization, Bondability, And Reliability, Minh-Nhat Ba Le Jun 2009

Advanced Thermosonic Wire Bonding Using High Frequency Ultrasonic Power: Optimization, Bondability, And Reliability, Minh-Nhat Ba Le

Master's Theses

Gold wire bonding typically uses 60 KHz ultrasonic frequency. Studies have been reported that increasing ultrasonic frequency from 60KHz to 120KHz can decrease bonding time, lower bonding temperature, and/or improve the bondability of Au metalized organic substrates. This thesis presents a systematic study of the effects of 120 KHz ultrasonic frequency on the reliability of fine pitch gold wire bonding. Two wire sizes, 25.4 and 17.8 μm in diameter (1.0 and 0.7 mil, respectively) were used. The gold wires were bonded to metalized pads over organic substrates with five different metallization. The studies were carried out using a thermosonic ball …