Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Characterization Of Low Power Hfo2 Based Switching Devices For In-Memory Computing, Aseel Zeinati May 2023

Characterization Of Low Power Hfo2 Based Switching Devices For In-Memory Computing, Aseel Zeinati

Theses

Oxide based Resistive Random Access Memory (RRAM) devices are investigated as one of the promising non-volatile memories to be used for in-memory computing that will replace the classical von Neumann architecture and reduce the power consumption. These applications required multilevel cell (MLC) characteristics that can be achieved in RRAM devices. One of the methods to achieve this analog switching behavior is by performing an optimized electrical pulse. The RRAM device structure is basically an insulator between two metals as metal-insulator-metal (MIM) structure. Where one of the primary challenges is to assign an RRAM stack with both low power consumption and …


Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula Dec 2022

Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula

Dissertations

Wide bandgap (WBG) semiconductors play a crucial role in the current solid-state lighting technology. The AlGaN compound semiconductor is widely used for ultraviolet (UV) light-emitting diodes (LEDs), however, the efficiency of these LEDs is largely in a single-digit percentage range due to several factors. Until recently, AlInN alloy has been relatively unexplored, though it holds potential for light-emitters operating in the visible and UV regions. In this dissertation, the first axial AlInN core-shell nanowire UV LEDs operating in the UV-A and UV-B regions with an internal quantum efficiency (IQE) of 52% are demonstrated. Moreover, the light extraction efficiency of this …


Iii-Nitride Nanostructures: Photonics And Memory Device Applications, Barsha Jain Dec 2021

Iii-Nitride Nanostructures: Photonics And Memory Device Applications, Barsha Jain

Dissertations

III-nitride materials are extensively studied for various applications. Particularly, III-nitride-based light-emitting diodes (LEDs) have become the major component of the current solid-state lighting (SSL) technology. Current III-nitride-based phosphor-free white color LEDs (White LEDs) require an electron blocking layer (EBL) between the device active region and p-GaN to control the electron overflow from the active region, which has been identified as one of the primary reasons to adversely affect the hole injection process. In this dissertation, the effect of electronically coupled quantum well (QW) is investigated to reduce electron overflow in the InGaN/GaN dot-in-a-wire phosphor-free white LEDs and to improve the …


Low-Energy Memristors & High-Nonlinearity Selector For Dense Passive Cross-Bar Arrays, Navnidhi K. Upadhyay May 2021

Low-Energy Memristors & High-Nonlinearity Selector For Dense Passive Cross-Bar Arrays, Navnidhi K. Upadhyay

Doctoral Dissertations

Memristor or RRAM (Resistive Random Access Memory) based crossbar array architecture (CBA) is considered a leading contender for the next-generation non-volatile memory (NVM) as well as for future computing paradigms, such as in-memory computing, neuromorphic computing, neural networks, analog computing, reconfigurable computing, etc. Among many other attractive properties, memristors’ simple and dense 3D stackable structure is an essential enabler of these promising applications. However, the simplicity and high density of CBA comes at a price. CBA suffers from the so-called sneak path currents flowing through the unselected cells, which severely affects the read margin, makes CBA more power-hungry, increases the …


The Efficacy Of Programming Energy Controlled Switching In Resistive Random Access Memory (Rram), David Malien Nminibapiel Jul 2017

The Efficacy Of Programming Energy Controlled Switching In Resistive Random Access Memory (Rram), David Malien Nminibapiel

Electrical & Computer Engineering Theses & Dissertations

Current state-of-the-art memory technologies such as FLASH, Static Random Access Memory (SRAM) and Dynamic RAM (DRAM) are based on charge storage. The semiconductor industry has relied on cell miniaturization to increase the performance and density of memory technology, while simultaneously decreasing the cost per bit. However, this approach is not sustainable because the charge-storage mechanism is reaching a fundamental scaling limit. Although stack engineering and 3D integration solutions can delay this limit, alternate strategies based on non-charge storage mechanisms for memory have been introduced and are being actively pursued.

Resistive Random Access Memory (RRAM) has emerged as one of the …