Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electronic Devices and Semiconductor Manufacturing

Theses/Dissertations

Nanostructures

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi Dec 2022

Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi

Graduate Theses and Dissertations

This work focuses on the investigation of gate-defined quantum dots in two-dimensional transition metal dichalcogenide tungsten diselenide (WSe2) as a means to unravel mesoscopic physical phenomena such as valley-contrasting physics in WSe2 flakes and its potential application as qubit, as well as realizing gate-controlled quantum dots based on elementaltellurium nanostructures which may unlock the topological nature of the host material carriers such as Weyl states in tellurium nanowires.The fabrication and characterization of gate-defined hole quantum dots in monolayer and bilayer WSe2 are reported. The gate electrodes in the device design are located above and below the WSe2 nanoflakes to accumulate …


Glucose Level Estimation Based On Invasive Electrochemical, And Non-Invasive Optical Sensing Methods, Sanghamitra Mandal May 2018

Glucose Level Estimation Based On Invasive Electrochemical, And Non-Invasive Optical Sensing Methods, Sanghamitra Mandal

Graduate Theses and Dissertations

The purpose of this research is to design and fabricate sensors for glucose detection using inexpensive approaches. My first research approach is the fabrication of an amperometric electrochemical glucose sensor, by exploiting the optical properties of semiconductors and structural properties of nanostructures, to enhance the sensor sensitivity and response time. Enzymatic electrochemical sensors are fabricated using two different mechanisms: (1) the low-temperature hydrothermal synthesis of zinc oxide nanorods, and (2) the rapid metal-assisted chemical etching of silicon (Si) to synthesize Si nanowires. The concept of gold nano-electrode ensembles is then employed to the sensors in order to boost the current …


The Impact Of Quantum Size Effects On Thermoelectric Performance In Semiconductor Nanostructures, Adithya Kommini Mar 2017

The Impact Of Quantum Size Effects On Thermoelectric Performance In Semiconductor Nanostructures, Adithya Kommini

Masters Theses

An increasing need for effective thermal sensors, together with dwindling energy resources, have created renewed interests in thermoelectric (TE), or solid-state, energy conversion and refrigeration using semiconductor-based nanostructures. Effective control of electron and phonon transport due to confinement, interface, and quantum effects has made nanostructures a good way to achieve more efficient thermoelectric energy conversion. This thesis studies the two well-known approaches: confinement and energy filtering, and implements improvements to achieve higher thermoelectric performance. The effect of confinement is evaluated using a 2D material with a gate and utilizing the features in the density of states. In addition to that, …


Design, Fabrication And Characterization Of Plasmonic Fishnet Structures For The Enhancement Of Absorption In Thin Film Solar Cells, Sayan Seal Dec 2013

Design, Fabrication And Characterization Of Plasmonic Fishnet Structures For The Enhancement Of Absorption In Thin Film Solar Cells, Sayan Seal

Graduate Theses and Dissertations

Incorporating plasmonic structures into the back spacer layer of thin film solar cells (TFSCs) is an efficient way to improve their performance. The fishnet structure; which is a tunable, plasmonic light scatterer is used to enhance light absorption. Unlike other plasmonic particles that have been previously suggested, the fishnet is an electrically connected wire mesh and does not result in electric field localization, hence it results in greater absorption in the intrinsic Si layer. Unlike other designs, the fishnet structure is placed in the back spacer layer of the TFSC, so it does not block any incident light. There is …


Fabrication Of Composite Nanomaterials For Thin Film Amorphous Silicon Solar Cells, Benjamin Seth Newton Dec 2011

Fabrication Of Composite Nanomaterials For Thin Film Amorphous Silicon Solar Cells, Benjamin Seth Newton

Graduate Theses and Dissertations

A material with the precise combination of amorphous silicon and polycrystalline silicon would be able to take advantage of the high absorption capabilities of amorphous silicon and the electron transport capabilities of polycrystalline silicon. Polycrystalline nanostructures in the form of wires can also take advantage of other properties of light absorption, trapping and scattering inherent in nanowire structures. These properties of high absorption and electron transport in one device would lead to advances in the search for highly efficient low cost solar cells and sensors. In this work a thin film material composed of an array of polycrystalline silicon nanostructures …