Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Carrier Dynamics In Green Iii-Nitride Leds Using Small-Signal Electroluminescence, Xuefeng Li Nov 2023

Carrier Dynamics In Green Iii-Nitride Leds Using Small-Signal Electroluminescence, Xuefeng Li

Optical Science and Engineering ETDs

Solid-state lighting has achieved significant success over the past two decades, but the low quantum efficiency of green LEDs (i.e., the “green gap”) remains a barrier to full red-green-blue (RGB) displays in numerous applications. Combating efficiency reduction in longer-wavelength LEDs requires understanding the relative roles of intrinsic effects (e.g., wave-function overlap, carrier-current density relationship, phase-space filling (PSF)) vs. extrinsic effects (e.g., material degradation due to increased defect density, compositional inhomogeneities, etc.). A systematic study of the carrier dynamics in InGaN/GaN LEDs is very important for understanding the origin of the green gap and for providing solutions to improve the efficiency …


Gamma And Neutron Irradiation Effect On Ga-Polar And N-Polar Gan Based Diodes, Farnood Mirkhosravi Jul 2022

Gamma And Neutron Irradiation Effect On Ga-Polar And N-Polar Gan Based Diodes, Farnood Mirkhosravi

Optical Science and Engineering ETDs

III-nitride material (GaN) shows a lot of potential for next-generation power electronics. This material is advantageous due to its wide bandgap, high electron mobility, high thermal and mechanical stability, small form factor, and higher radiation tolerance. The higher radiation tolerance makes the GaN-based devices more attractive for harsh-environment applications, like aerospace, nuclear reactor, and fusion facilities, particle accelerators, and post-detonation environments applications.

GaN due to its unique crystal structure can be grown in different orientations and can provide specific advantages in electronic and optoelectronic devices. While the Ga-polar orientation of GaN has been widely investigated for its proprieties, there are …


Integrated Chirped-Grating Spectrometer-On-A-Chip, Shima Nezhadbadeh Nov 2019

Integrated Chirped-Grating Spectrometer-On-A-Chip, Shima Nezhadbadeh

Optical Science and Engineering ETDs

In this dissertation we demonstrate a new structure based on waveguide coupling atop a silicon wafer using a chirped grating to provide the dispersion that leads to a high-resolution, compact, fully integrable and CMOS-compatible spectrometer. Light is both analyzed and detected in a single, completely monolithic component which enables realizing a high-resolution portable spectrometer with an extremely compact footprint. The structure is comprised of a SiO2/Si3N4/SiO2 waveguide on top of a silicon wafer. Grating regions are fabricated on the top cladding of the waveguide. The input light is incident on a chirped grating …


Algorithmic Multi-Color Cmos Avalanche Photodiodes For Smart-Lighting Applications, Md Mottaleb Hossain May 2019

Algorithmic Multi-Color Cmos Avalanche Photodiodes For Smart-Lighting Applications, Md Mottaleb Hossain

Optical Science and Engineering ETDs

Future smart-lighting systems are expected to deliver adaptively color-tunable and high-quality lighting that is energy efficient while also offering integrated visible-light wireless communication services. To enable these systems at a commercial level, inexpensive and fast sensors with spectral-sensing capability are required. CMOS-compatible silicon avalanche photodiodes (APDs) can be an excellent fit to this problem due to their excellent sensitivity, high speeds and cost effectiveness; however, color sensing is a challenge without resorting to expensive spectral filters, as done in commercially. To address this challenge, we have recently designed and modeled a novel CMOS-compatible dual-junction APD. The device outputs two photocurrents …


Vertical Transport Study Of Iii-V Type-Ii Superlattices, Zahra Taghipour Nov 2018

Vertical Transport Study Of Iii-V Type-Ii Superlattices, Zahra Taghipour

Optical Science and Engineering ETDs

Type-II strained layer superlattice (T2SL) semiconductors hold great promise for mid- and long-wavelength infrared photodetectors. While T2SL-based materials have advanced significantly in the last three decades, an outstanding challenge to improve the T2SLs is to understand the carrier transport and its limitations, in particular along the superlattice growth layers.

In this dissertation, an overview of the current state-of-the-art InAs/GaSb T2SLs is presented. Fundamental semiconductor device equations and transport properties, including miniband conduction and the drift-diffusion parameters, are reviewed, and the fundamental limiting factors in carrier's transport are discussed. Furthermore, the standard method of electron-beam-induced current technique to measuring these parameters …


High Power Optically Pumped Semiconductor Lasers For Sodium Guidestar Applications, Shawn W. Hackett Nov 2016

High Power Optically Pumped Semiconductor Lasers For Sodium Guidestar Applications, Shawn W. Hackett

Optical Science and Engineering ETDs

Optically pumped semiconductor lasers (OPSLs) are shown to provide a much more compact and less expensive source for illumination of the sodium layer of the mesosphere for use as a sodium laser guidestar via single and two photon excitation schemes. This represents a revolution in laser guidestar technology as the cost, size, and power requirements for a laser guidestar system are shown to have been decreased by an order of magnitude with guidestar performance shown to be similar to previous sources. Sodium laser guidestar sources for broadband simultaneous illumination of multiple lines are developed and simulated. Simulations are then compared …