Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Investigation Of Vo2 Thin Films And Devices For Opto-Electromechanical Applications, Samee Azad Aug 2023

Investigation Of Vo2 Thin Films And Devices For Opto-Electromechanical Applications, Samee Azad

All Dissertations

Specialized and optimized low pressure direct oxidation technique have been implemented to synthesize high quality VO2 thin films on various substrates (sapphire, SiO2/Si, AT-cut quartz, GaN/AlGaN/GaN/Si and muscovite). Structural and surface characterization methods such as X-ray diffraction, Raman spectroscopy and atomic force microscopy have been administered on the grown VO2 films which indicate their material quality. Transition of characteristics of the VO2 films are caused by semiconductor metal transition (SMT). This phenomenon is attributed as the change maker in transition of resistivity and transmitted optical power through the VO2 films. Apart the substrates mentioned, …


Iii-Nitride Triangular Microcantilevers For Multimodal Sensing Applications, Balaadithya Uppalapati May 2023

Iii-Nitride Triangular Microcantilevers For Multimodal Sensing Applications, Balaadithya Uppalapati

All Dissertations

Micro-electromechanical systems (MEMS)-based sensors have gained significant attention due to their ability to sense, measure, and process various physical, chemical, and biological parameters. The small size of MEMS sensors provides numerous advantages, including low power consumption, high sensitivity, and rapid response time, making them suitable for various applications in healthcare, automotive, aerospace, and consumer electronics.

In the past few years, AlGaN/GaN MEMS devices have been found to offer several advantages over silicon-based MEMS devices. One of the main advantages of AlGaN/GaN MEMS is their high sensitivity to surface stresses and forces due to their high piezoelectric coefficients. This sensitivity allows …


Enhancing The Performance Of Poly(3-Hexylthiophene) Based Organic Thin-Film Transistors Using An Interface Engineering Method, Eyob Negussie Tarekegn Dec 2022

Enhancing The Performance Of Poly(3-Hexylthiophene) Based Organic Thin-Film Transistors Using An Interface Engineering Method, Eyob Negussie Tarekegn

All Dissertations

An original design and photolithographic fabrication process for poly(3-hexylthiophene-2, 5-diyl) (P3HT) based organic thin-film transistors (OTFTs) is presented. The structure of the transistors was based on the bottom gate bottom contact OTFT. The fabrication process was efficient, cost-effective, and relatively straightforward to implement. Current–voltage (I-V) measurements were performed to characterize the primary electronic properties of the transistors. The measured mobility of these transistors was significantly higher than most results reported in the literature for other similar bottom gate bottom contact P3HT OTFTs. The higher mobility is explained primarily by the effectiveness of the fabrication process in keeping the interfacial layers …