Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 26 of 26

Full-Text Articles in Engineering

Comparing The Iwl-Mvm-Rs And Minstrel-Ht Rate Adaptation Algorithms Under Different Local Error Conditions, Luhan Wang, Mark Davis Jan 2023

Comparing The Iwl-Mvm-Rs And Minstrel-Ht Rate Adaptation Algorithms Under Different Local Error Conditions, Luhan Wang, Mark Davis

Conference papers

WLAN technology has grown rapidly and now provides increasingly reliable and fast wireless connectivity. A number of Rate Adaptation Algorithms (RAAs) which are designed to select the optimal line rate according to the channel conditions have been proposed. Iwl-Mvm-Rs RAA which is implemented in the Intel wireless chips and Minstrel-HT RAA which is implemented in the Linux kernels are two such well known algorithms. Many existing papers evaluate these two algorithms with regard to device mobility and signal fading. However, the causes of frame errors can be divided into two categories: weak signal reception and collisions. Therefore, in this paper, …


Efficiently Estimating Survival Signature And Two-Terminal Reliability Of Heterogeneous Networks Through Multi-Objective Optimization, Daniel Bruno Lopes Da Silva Jul 2021

Efficiently Estimating Survival Signature And Two-Terminal Reliability Of Heterogeneous Networks Through Multi-Objective Optimization, Daniel Bruno Lopes Da Silva

Graduate Theses and Dissertations

The two-terminal reliability problem is a classical reliability problem with applications in wired and wireless communication networks, electronic circuit design, computer networks, and electrical power distribution, among other systems. However, the two-terminal reliability problem is among the hardest combinatorial problems and is intractable for large, complex networks. Several exact methods to solve the two-terminal reliability problem have been proposed since the 1960s, but they have exponential time complexity in general. Hence, practical studies involving large network-type systems resort to approximation methods to estimate the system's reliability. One attractive approach for quantifying the reliability of complex systems is to use signatures, …


Deep Models For Improving The Performance And Reliability Of Person Recognition, Sobhan Soleymani Jan 2021

Deep Models For Improving The Performance And Reliability Of Person Recognition, Sobhan Soleymani

Graduate Theses, Dissertations, and Problem Reports

Deep models have provided high accuracy for different applications such as person recognition, image segmentation, image captioning, scene description, and action recognition. In this dissertation, we study the deep learning models and their application in improving the performance and reliability of person recognition. This dissertation focuses on five aspects of person recognition: (1) multimodal person recognition, (2) quality-aware multi-sample person recognition, (3) text-independent speaker verification, (4) adversarial iris examples, and (5) morphed face images. First, we discuss the application of multimodal networks consisting of face, iris, fingerprint, and speech modalities in person recognition. We propose multi-stream convolutional neural network architectures …


Robust Control Of A Multi-Phase Interleaved Boost Converter For Photovoltaic Application Using Μ-Synthesis Approach, Badur Mueedh Alharbi Dec 2020

Robust Control Of A Multi-Phase Interleaved Boost Converter For Photovoltaic Application Using Μ-Synthesis Approach, Badur Mueedh Alharbi

Graduate Theses and Dissertations

The high demand of energy efficiency has led to the development power converter topologies and control system designs within the field of power electronics. Recent advances of interleaved boost converters have showed improved features between the power conversion topologies in several aspects, including power quality, efficiency, sustainability and reliability.

Interleaved boost converter with multi-phase technique for PV system is an attractive area for distributed power generation. During load variation or power supply changes due to the weather changes the output voltage requires a robust control to maintain stable and perform robustness.

Connecting converters in series and parallel have the advantages …


Optimal Sizing Of Energy Storage With Embedded Wind Power Generation, Nicholas Roche, Jane Courtney Jan 2020

Optimal Sizing Of Energy Storage With Embedded Wind Power Generation, Nicholas Roche, Jane Courtney

Articles

Energy storage technologies are key to increased penetration of renewable energies on the distribution system. Not only do they increase availability of energy, but they contribute to the overall reliability of the system. However, the cost of large-scale storage systems can often be prohibitive, and storage needs to be sized appropriately, both to fill the energy gaps inevitable in renewable energies such as wind and to minimize costs. In this work, a Monte Carlo Simulation is performed to optimally size an energy storage system while minimizing overall system cost. 30 years of historical wind speed data are used to model …


Characterization Of Self-Heating Effects And Assessment Of Its Impact On Reliability In Finfet Technology, Peter Christopher Paliwoda Dec 2018

Characterization Of Self-Heating Effects And Assessment Of Its Impact On Reliability In Finfet Technology, Peter Christopher Paliwoda

Dissertations

The systematically growing power (heat) dissipation in CMOS transistors with each successive technology node is reaching levels which could impact its reliable operation. The emergence of technologies such as bulk/SOI FinFETs has dramatically confined the heat in the device channel due to its vertical geometry and it is expected to further exacerbate with gate-all-around transistors.

This work studies heat generation in the channel of semiconductor devices and measures its dissipation by means of wafer level characterization and predictive thermal simulation. The experimental work is based on several existing device thermometry techniques to which additional layout improvements are made in state …


Development Of A Rapid Fatigue Life Testing Method For Reliability Assessment Of Flip-Chip Solder Interconnects, Cody Jackson Marbut Dec 2018

Development Of A Rapid Fatigue Life Testing Method For Reliability Assessment Of Flip-Chip Solder Interconnects, Cody Jackson Marbut

Graduate Theses and Dissertations

The underlying physics of failure are critical in assessing the long term reliability of power packages in their intended field applications, yet traditional reliability determination methods are largely inadequate when considering thermomechanical failures. With current reliability determination methods, long test durations, high costs, and a conglomerate of concurrent reliability degrading threat factors make effective understanding of device reliability difficult and expensive. In this work, an alternative reliability testing apparatus and associated protocol was developed to address these concerns; targeting rapid testing times with minimal cost while preserving fatigue life prediction accuracy. Two test stands were fabricated to evaluate device reliability …


Optimization For Integration Of Plug-In Hybrid Electric Vehicles Into Distribution Grid, Shuaiyu Bu May 2018

Optimization For Integration Of Plug-In Hybrid Electric Vehicles Into Distribution Grid, Shuaiyu Bu

Theses and Dissertations

Plug-in hybrid electric vehicles (PHEVs) feature combined electric and gasoline powertrains with internal combustion engine and electric motors powered by battery packs. The battery packs of PHEVs are mostly charged during off-peaks hours at lower prices and meanwhile absorb the excess power from the grid. Similarly, the power stored in the batteries can also flow back to the electric grid in response to ease the peak load demands.

With the increasing penetration and integration of PHEVs, the reliability of PHEVs is essential to overall power system reliability since the charging mechanisms of PHEVs can influence the reliability of power system. …


Screen Printing Silver Stretchable Conductive Paste To High Density Synthetic Fabric, Allison Rose Tuuri, Wesley Graham Powell Jun 2017

Screen Printing Silver Stretchable Conductive Paste To High Density Synthetic Fabric, Allison Rose Tuuri, Wesley Graham Powell

Materials Engineering

This project investigated the viability of screen printing stretchable silver conductive paste directly onto fabric and how the resistance changed under cyclic mechanical loading. The paste tested was DuPont™ PE873 stretchable silver conductive paste, which forms a stretchable conductive path by suspending silver flakes in elastomer that can be elastically strained along with the underlying substrate. The silver pastes were printed directly onto two different high-density synthetic fabrics of different weaves. Other samples were prepared by first printing a base layer between the silver paste and the fabric. One base layer was a solvent-based dielectric (DuPont™ ME776) and a stretchable …


Hvdc Transmission System Reliability Evaluation Based On Condition-Dependent Failure Models Of Converters And Transformers, Zibo Wang May 2017

Hvdc Transmission System Reliability Evaluation Based On Condition-Dependent Failure Models Of Converters And Transformers, Zibo Wang

Theses and Dissertations

Wind energy, especially offshore wind energy, is the focus of policy for countries that want to make significant use of renewable energy. With the development of semiconductor technology, high voltage direct current (HVDC) technology is being widely used for the transmission of wind power from offshore windfarms to onshore power grids. The application of HVDC technology can benefit the power system in many ways, such as operation security, reliability performance and economy. With the increasing number of applications of HVDC, the reliability performance of HVDC plays an important role in the overall power system reliability. Although the reliability of HVDC …


Large Scale Integration Of Electric Vehicles Into The Power Grid And Its Potential Effects On Power System Reliability, Mingzhi Zhang May 2017

Large Scale Integration Of Electric Vehicles Into The Power Grid And Its Potential Effects On Power System Reliability, Mingzhi Zhang

Theses and Dissertations

In this thesis, the potential effects of large scale integration of electric vehicles into the power grid are discussed in both the beneficial and detrimental aspects. The literature review gives a comprehensive introduction about the existing smart charging algorithms. According to the system structure and market mechanism, the smart charging algorithms can be divided into centralized and distributed method. With the knowledge of driving patterns and charging characteristics of electric vehicles, both the centralized and decentralized smart charging algorithms are studied in this research.

Based on the smart charging pricing and sequential price update mechanism, a multi-agent based distributed smart …


Real-Time Internal Temperature Estimation And Health Monitoring For Igbt Modules, Ze Wang Jan 2017

Real-Time Internal Temperature Estimation And Health Monitoring For Igbt Modules, Ze Wang

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Field experiences have demonstrated that power semiconductor devices, such as insulated-gate bipolar transistors (IGBTs), are among the most fragile components of power electronic converters. Thermomechanical stresses produced by temperature variations during operational and environmental loads are the major causes of IGBT degradation. As the devices are often operated under complex working conditions, temperature variations and the associated damage are difficult to predict during the converter design stage. A promising approach—online health monitoring and prognosis for power semiconductor devices—that can avoid device failure and effectively schedule maintenance has attracted much interest.

This dissertation research focused on real-time accurate internal temperature estimation …


Benefits Of Considering More Than Temperature Acceleration For Gan Hemt Life Testing, Ronald A. Coutu Jr., Robert A. Lake, Bradley D. Christiansen, Eric R. Heller, Christopher A. Bozada, Brian S. Poling, Glen D. Via, James P. Theimer, Stephen E. Tetlak, Ramakrishna Vetury, Jeffrey B. Shealy Jun 2016

Benefits Of Considering More Than Temperature Acceleration For Gan Hemt Life Testing, Ronald A. Coutu Jr., Robert A. Lake, Bradley D. Christiansen, Eric R. Heller, Christopher A. Bozada, Brian S. Poling, Glen D. Via, James P. Theimer, Stephen E. Tetlak, Ramakrishna Vetury, Jeffrey B. Shealy

Faculty Publications

The purpose of this work was to investigate the validity of Arrhenius accelerated-life testing when applied to gallium nitride (GaN) high electron mobility transistors (HEMT) lifetime assessments, where the standard assumption is that only critical stressor is temperature, which is derived from operating power, device channel-case, thermal resistance, and baseplate temperature. We found that power or temperature alone could not explain difference in observed degradation, and that accelerated life tests employed by industry can benefit by considering the impact of accelerating factors besides temperature. Specifically, we found that the voltage used to reach a desired power dissipation is important, and …


Reliability Study Of Zr And Al Incorporated Hf Based High-K Dielectric Deposited By Advanced Processing, Md Nasir Uddin Bhuyian Jan 2015

Reliability Study Of Zr And Al Incorporated Hf Based High-K Dielectric Deposited By Advanced Processing, Md Nasir Uddin Bhuyian

Dissertations

Hafnium-based high-x dielectric materials have been successfully used in the industry as a key replacement for SiO2 based gate dielectrics in order to continue CMOS device scaling to the 22-nm technology node. Further scaling according to the device roadmap requires the development of oxides with higher x values in order to scale the equivalent oxide thickness (EOT) to 0.7 nm or below while achieving low defect densities. In addition, next generation devices need to meet challenges like improved channel mobility, reduced gate leakage current, good control on threshold voltage, lower interface state density, and good reliability. In order to …


Nanostructured Semiconductor Device Design In Solar Cells, Hongmei Dang Jan 2015

Nanostructured Semiconductor Device Design In Solar Cells, Hongmei Dang

Theses and Dissertations--Electrical and Computer Engineering

We demonstrate the use of embedded CdS nanowires in improving spectral transmission loss and the low mechanical and electrical robustness of planar CdS window layer and thus enhancing the quantum efficiency and the reliability of the CdS-CdTe solar cells. CdS nanowire window layer enables light transmission gain at 300nm-550nm. A nearly ideal spectral response of quantum efficiency at a wide spectrum range provides an evidence for improving light transmission in the window layer and enhancing absorption and carrier generation in absorber. Nanowire CdS/CdTe solar cells with Cu/graphite/silver paste as back contacts, on SnO2/ITO-soda lime glass substrates, yield the …


Predictive Modeling For Assessing The Reliability Of Bypass Diodes In Photovoltaic Modules, Narendra Shiradkar Jan 2015

Predictive Modeling For Assessing The Reliability Of Bypass Diodes In Photovoltaic Modules, Narendra Shiradkar

Electronic Theses and Dissertations

Solar Photovoltaics (PV) is one of the most promising renewable energy technologies for mitigating the effect of climate change. Reliability of PV modules directly impacts the Levelized Cost of Energy (LCOE), which is a metric for cost competitiveness of any energy technology. Further reduction in LCOE of PV through assured long term reliability is necessary in order to facilitate widespread use of solar energy without the need for subsidies. This dissertation is focused on frameworks for assessing reliability of bypass diodes in PV modules. Bypass diodes are critical components in PV modules that provide protection against shading. Failure of bypass …


Electron – Phonon Interaction In Multiple Channel Gan Based Hfets: Heat Management Optimization, Romualdo A. Ferreyra Jan 2014

Electron – Phonon Interaction In Multiple Channel Gan Based Hfets: Heat Management Optimization, Romualdo A. Ferreyra

Theses and Dissertations

New power applications for managing increasingly higher power levels require that more heat be removed from the power transistor channel. Conventional treatments for heat dissipation do not take into account the conversion of excess electron energy into longitudinal optical (LO) phonons, whose associated heat is stored in the channel unless such LO phonons decay into longitudinal acoustic (LA) phonons via a Ridley path. A two dimensional electron gas (2DEG) density of ~5×1012cm-2 in the channel results in a strong plasmon–LO phonon coupling (resonance) and a minimum LO phonon lifetime is experimentally observed, implying fast heat removal from …


Rf Power Amplifier And Oscillator Design For Reliability And Variability, Shuyu Chen Jan 2013

Rf Power Amplifier And Oscillator Design For Reliability And Variability, Shuyu Chen

Electronic Theses and Dissertations

CMOS RF circuit design has been an ever-lasting research field. It gained so much attention since RF circuits have high mobility and wide band efficiency, while CMOS technology has the advantage of low cost and better capability of integration. At the same time, IC circuits never stopped scaling down for the recent many decades. Reliability issues with RF circuits have become more and more severe with device scaling down: reliability effects such as gate oxide break down, hot carrier injection, negative bias temperature instability, have been amplified as the device size shrinks. Process variability issues also become more predominant as …


Design And Characterization Of High Temperature Packaging For Wide-Bandgap Semiconductor Devices, Brian Grummel Jan 2012

Design And Characterization Of High Temperature Packaging For Wide-Bandgap Semiconductor Devices, Brian Grummel

Electronic Theses and Dissertations

Advances in wide-bandgap semiconductor devices have increased the allowable operating temperature of power electronic systems. High-temperature devices can benefit applications such as renewable energy, electric vehicles, and space-based power electronics that currently require bulky cooling systems for silicon power devices. Cooling systems can typically be reduced in size or removed by adopting wide-bandgap semiconductor devices, such as silicon carbide. However, to do this, semiconductor device packaging with high reliability at high temperatures is necessary. Transient liquid phase (TLP) die-attach has shown in literature to be a promising bonding technique for this packaging need. In this work TLP has been comprehensively …


Tin/Hfo2/Sio2/Si Gate Stacks Reliability : Contribution Of Hfo2 And Interfacial Sio2 Layer, Nilufa Rahim Jan 2011

Tin/Hfo2/Sio2/Si Gate Stacks Reliability : Contribution Of Hfo2 And Interfacial Sio2 Layer, Nilufa Rahim

Dissertations

Hafnium Oxide based gate stacks are considered to be the potential candidates to replace SiO2 in complementary metal-oxide-semiconductor (CMOS), as they reduce the gate leakage by over 100 times while keeping the device performance intact. Even though considerable performance improvement has been achieved, reliability of high-κ devices for the next generation of transistors (45nm and beyond) which has an interfacial layer (IL: typically SiO2) between high-κ and the substrate, needs to be investigated. To understand the breakdown mechanism of high-κ/SiO2 gate stack completely, it is important to study this multi-layer structure extensively. For example, (i) the …


Reliability Studies Of Tin/Hf-Silicate Based Gate Stacks, Naser Ahmed Chowdhury May 2007

Reliability Studies Of Tin/Hf-Silicate Based Gate Stacks, Naser Ahmed Chowdhury

Dissertations

Hafnium-silicate based oxides are among the leading candidates to be included into the first generation of high-Κ gate stacks in nano-scale CMOS technology because of their distinct advantages as far as thermal stability, leakage characteristics, threshold stability and low mobility degradation are concerned. Their reliability, which is limited by trapping at pre-existing and stress induced defects, remains to be a major concern.

Energy levels of electrically active ionic defects within the thick high-Κ have been experimentally observed in the context of MOS band diagram for the first time in Hf-silicate gate stacks from low temperature and leakage measurements. Excellent match …


Hot Carrier Effect On Ldmos Transistors, Liangjun Jiang Jan 2007

Hot Carrier Effect On Ldmos Transistors, Liangjun Jiang

Electronic Theses and Dissertations

One of the main problems encountered when scaling down is the hot carrier induced degradation of MOSFETs. This problem has been studied intensively during the past decade, under both static and dynamic stress conditions. In this period it has evolved from a more or less academic research topic to one of the most stringent constraints guaranteeing the lifetime of sub-micron devices. New drain engineering technique leads to the extensive usage of lateral doped drain structures. In these devices the peak of the lateral field is lowered by reducing the doping concentration near the drain and by providing a smooth junction …


Study Of Nanoscale Cmos Device And Circuit Reliability, Chuanzhao Yu Jan 2006

Study Of Nanoscale Cmos Device And Circuit Reliability, Chuanzhao Yu

Electronic Theses and Dissertations

The development of semiconductor technology has led to the significant scaling of the transistor dimensions -The transistor gate length drops down to tens of nanometers and the gate oxide thickness to 1 nm. In the future several years, the deep submicron devices will dominate the semiconductor industry for the high transistor density and the corresponding performance enhancement. For these devices, the reliability issues are the first concern for the commercialization. The major reliability issues caused by voltage and/or temperature stress are gate oxide breakdown (BD), hot carrier effects (HCs), and negative bias temperature instability (NBTI). They become even more important …


Impact Of Interconnection Photovoltaic/Wind System With Utility On Their Reliability Using A Fuzzy Scheme, Dr. Adel A. Elbaset Aug 2005

Impact Of Interconnection Photovoltaic/Wind System With Utility On Their Reliability Using A Fuzzy Scheme, Dr. Adel A. Elbaset

Dr. Adel A. Elbaset

Reliability analysis has been considered as an important step in any system design process. a reliable electrical power system means that the system which having sufficient power to feed the load demand during a certain period or in other word, having small Loss of Load Probability (LOLP). LOLP is defined as an expected fraction of load not met by its needed power from electrical power system during its lifetime. Photovoltaic (PV) / Wind Energy System (WES) hybrid electric power system (PV/WES HEPS) differs considerably from the utility grid (UG) in their performance and operating characteristics. With the interconnection of PV/WES …


Modeling And Simulation Of Long Term Degradation And Lifetime Of Deep-Submicron Mos Device And Circuit, Zhi Cui Jan 2005

Modeling And Simulation Of Long Term Degradation And Lifetime Of Deep-Submicron Mos Device And Circuit, Zhi Cui

Electronic Theses and Dissertations

Long-term hot-carrier induced degradation of MOS devices has become more severe as the device size continues to scale down to submicron range. In our work, a simple yet effective method has been developed to provide the degradation laws with a better predictability. The method can be easily augmented into any of the existing degradation laws without requiring additional algorithm. With more accurate extrapolation method, we present a direct and accurate approach to modeling empirically the 0.18-ìm MOS reliability, which can predict the MOS lifetime as a function of drain voltage and channel length. With the further study on physical mechanism …


Study Of Oxide Breakdown, Hot Carrier And Nbti Effects On Mos Device And Circuit Reliability, Yi Liu Jan 2005

Study Of Oxide Breakdown, Hot Carrier And Nbti Effects On Mos Device And Circuit Reliability, Yi Liu

Electronic Theses and Dissertations

As CMOS device sizes shrink, the channel electric field becomes higher and the hot carrier (HC) effect becomes more significant. When the oxide is scaled down to less than 3 nm, gate oxide breakdown (BD) often takes place. As a result, oxide trapping and interface generation cause long term performance drift and related reliability problems in devices and circuits. The RF front-end circuits include low noise amplifier (LNA), local oscillator (LO) and mixer. It is desirable for a LNA to achieve high gain with low noise figure, a LO to generate low noise signal with sufficient output power, wide tuning …