Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Parametric Average-Value Modeling, Simulation, And Characterization Of Machine-Rectifier Systems, Isuje Ojo Jan 2022

Parametric Average-Value Modeling, Simulation, And Characterization Of Machine-Rectifier Systems, Isuje Ojo

Theses and Dissertations--Electrical and Computer Engineering

There are many techniques for modeling and simulation of synchronous machine-rectifier systems. The more common approaches are the detailed and average-value modeling techniques. The detailed simulation technique takes into account the details of the diode switching and is both very accurate and very expensive in terms of computational resources. To alleviate this disadvantage, the average-value modeling technique is often utilized. In this approach, the details of diode switching are neglected or averaged. In that light, the work presented herein proposes a unique saliency-sensitive parametric average-value model (SSPAVM) of the synchronous machine-rectifier system. This model extends existing parametric average-value models to …


Photovoltage Enhancement For Stable Perovskite Solar Cells With A Temperature-Controlled Grain Growth Technique, Luis Eduardo Valerio Jan 2020

Photovoltage Enhancement For Stable Perovskite Solar Cells With A Temperature-Controlled Grain Growth Technique, Luis Eduardo Valerio

Open Access Theses & Dissertations

By performing strong characterizations methods, one can begin to fully understand the chemistry and composition behind a great performing perovskite solar cell. Understanding how the interaction between layers inside a solar cell is driven by the temperature and overall environment is a key element to improve the fabrication process and overall efficiency of such cells. This Thesis will present a study of the hybrid organic-inorganic, mixed-cation, mixed-halide, temperature and thickness-controlled perovskite solar cell. A constant power conversion efficiency (PCE) ranging between 15-17% and an open circuit voltage V¬oc above 1.05 V for a wide-band gap perovskite cell is presented.


Caracterización De La Variabilidad Del Recurso Eólico, Sergio Stiven Salamanca Forero Jan 2020

Caracterización De La Variabilidad Del Recurso Eólico, Sergio Stiven Salamanca Forero

Ingeniería Eléctrica

La generación de energía eléctrica a partir de fuentes renovables ha signi fi cado uno de los mayores avances tecnológicos en las últimas décadas, esto gracias a su aporte para disminuir la contaminación que se produce utilizando combustibles fósiles como fuente principal y además ofrecer un soporte en materia de seguridad energética. La tendencia de utilizar cada vez más alternativas de generación con energías renovables se encuentra en crecimiento permanente y por esto resulta de importancia vital estudiar más este campo para lograr facilitar la integración de estas en la red actual.

En el presente trabajo se centra en un …


Development And Characterization Of Perovskite Solar Cells For Tandem Device Configuration, Angel Moiseis De La Rosa Jan 2020

Development And Characterization Of Perovskite Solar Cells For Tandem Device Configuration, Angel Moiseis De La Rosa

Open Access Theses & Dissertations

Photovoltaic devices based on perovskite materials are constantly progressing towards more applicability in large-area panels. In order for perovskite-based photovoltaics to reach reliable and stable commercialization, common issues with the use of perovskite still need to be resolved, including the need to identify fabrication processes that can yield optimal material parameters for better photovoltaic performance. Defining an optimal fabrication process requires that researchers and manufacturers alike come to an agreement regarding perovskite characteristics that result from device operation and material processing. This work focuses on characterizing physical, electrical, and electronic properties of a FAxCs1-xPb(IyBr1-y)3 perovskite, and how some of these …


Neutron Diffraction Study Of Multiferroic 0.6nife2o4/0.4batio3 Composite, Engkir Sukirman, Yosef Sarwanto, Syahfandi Ahda, Andon Insani Dec 2019

Neutron Diffraction Study Of Multiferroic 0.6nife2o4/0.4batio3 Composite, Engkir Sukirman, Yosef Sarwanto, Syahfandi Ahda, Andon Insani

Makara Journal of Technology

Neutron diffraction study on the 0.6NiFe2O4/0.4BaTiO3 multiferroic composite has been carried out. The 0.6NiFe2O4/0.4BaTiO3 multiferroic composites have been synthesized by solid reaction method. In this study, 20 g of BaTiO3 (BTO) and 20 g of NiFe2O4 (NFO) compounds were prepared from the powder raw materials of BaO3 and TiO2 for BTO, and NiO and Fe2O3 for NFO. Furthermore, both BTO and NFO were each crushed for 5 hours using High Energy Milling (HEM). Then the BTO and NFO were calcined in the furnace at 950 °C/5 hours and 900 °C/5 hours, respectively. Both NFO and BTO precursors were manually mixed …


On-Chip Communication And Security In Fpgas, Shivukumar Basanagouda Patil Oct 2018

On-Chip Communication And Security In Fpgas, Shivukumar Basanagouda Patil

Masters Theses

Innovations in Field Programmable Gate Array (FPGA) manufacturing processes and architectural design have led to the development of extremely large FPGAs. There has also been a widespread adaptation of these large FPGAs in cloud infrastructures and data centers to accelerate search and machine learning applications. Two important topics related to FPGAs are addressed in this work: on-chip communication and security. On-chip communication is quickly becoming a bottleneck in to- day’s large multi-million gate FPGAs. Hard Networks-on-Chip (NoC), made of fixed silicon, have been shown to provide low power, high speed, flexible on-chip communication. An iterative algorithm for routing pre-scheduled time-division-multiplexed …


Growth And Analysis Of Micro And Nano Cdte Arrays For Solar Cell Applications, Brandon Adrian Aguirre Jan 2014

Growth And Analysis Of Micro And Nano Cdte Arrays For Solar Cell Applications, Brandon Adrian Aguirre

Open Access Theses & Dissertations

CdTe is an excellent material for infrared detectors and photovoltaic applications. The efficiency of CdTe/CdS solar cells has increased very rapidly in the last 3 years to ~20% but is still below the maximum theoretical value of 30%. Although the short-circuit current density is close to its maximum of 30 mA/cm2, the open circuit voltage has potential to be increased further to over 1 Volt. The main limitation that prevents further increase in the open-circuit voltage and therefore efficiency is the high defect density in the CdTe absorber layer. Reducing the defect density will increase the open-circuit voltage above 1 …


Dc, Rf, And Thermal Characterization Of High Electric Field Induced Degradation Mechanisms In Gan-On-Si High Electron Mobility Transistors, Matthew Anthony Bloom Mar 2013

Dc, Rf, And Thermal Characterization Of High Electric Field Induced Degradation Mechanisms In Gan-On-Si High Electron Mobility Transistors, Matthew Anthony Bloom

Master's Theses

Gallium Nitride (GaN) high electron mobility transistors (HEMTs) are becoming increasingly popular in power amplifier systems as an alternative to bulkier vacuum tube technologies. GaN offers advantages over other III-V semiconductor heterostructures such as a large bandgap energy, a low dielectric constant, and a high critical breakdown field. The aforementioned qualities make GaN a prime candidate for high-power and radiation-hardened applications using a smaller form-factor. Several different types of semiconductor substrates have been considered for their thermal properties and cost-effectiveness, and Silicon (Si) has been of increasing interest due to a balance between both factors.

In this thesis, the DC, …


Effects Of Deposition Parameters And Oxygen Addition On Properties Of Sputtered Indium Tin Oxide Films, Badrul Munir, Rachmat Adhi Wibowo, Kim Kyoo Ho Nov 2012

Effects Of Deposition Parameters And Oxygen Addition On Properties Of Sputtered Indium Tin Oxide Films, Badrul Munir, Rachmat Adhi Wibowo, Kim Kyoo Ho

Makara Journal of Technology

Indium tin oxide (ITO) films were sputtered on corning glass substrate. Oxygen admixture and sputtering deposition parameters were optimized to obtain the highest transparency as well as lowest resistivity. Structural, electrical and optical properties of the films were then examined. Increasing deposition rate and film thickness changed the crystallographic orientation from (222) to (400) and (440), as well as higher surface roughness. It was necessary to apply substrate heating during reposition to get films with better crystallinity. The lowest resistivity of 5.36 x 10-4 Ω•cm was obtained at 750 nm film thickness. The films’ resistivity was increased by addition of …


Nanoprobe I-V Characterization Of Cdte/Cds Micro And Nano-Patterned Solar Cells, Heber Prieto Jan 2012

Nanoprobe I-V Characterization Of Cdte/Cds Micro And Nano-Patterned Solar Cells, Heber Prieto

Open Access Theses & Dissertations

This thesis presents a novel way to characterize micro and nano patterned cadmium telluride thin film solar cells via a nano-probe system. A historical review of CdTe-based solar cells is presented first followed by review of the technology developed to produce the patterned CdTe cells. A detailed presentation is then provided on the use of a Zyvex nanoprobing system to characterize the patterned solar cells. The I-V response of micro- and nano-patterned solar cells stimulated under different e-beam conditions is presented and analyzed. Suggestions of how to improve the technique are provided. This work documents, for the first time, the …


Electrical Characterization And Testing Of Microelectronic Materials, Devices, And Circuits, David Kotecki Sep 2004

Electrical Characterization And Testing Of Microelectronic Materials, Devices, And Circuits, David Kotecki

University of Maine Office of Research Administration: Grant Reports

This project, strengthening the microelectronics program in the Electrical and Computer Engineering Department (ECE), proposes to establish an electrical characterization and test laboratory which will provide the capability for measuring electrical properties of materials, devices, and circuits. Electrical test equipment for the measurement and characterization of dielectric materials, devices, and circuit components, will be acquired in order to provide students with hands-on experience in electrical measurements complementing the other labs in the ECE Department. In addition to providing training in microelectronics testing, the facility will allow for expanded research in the area of solid-state electronics. Focusing on material characterization, including …