Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Electro-Thermal Transport In Two-Dimensional Materials And Their Heterostructures, Arnab K. Majee Jun 2021

Electro-Thermal Transport In Two-Dimensional Materials And Their Heterostructures, Arnab K. Majee

Doctoral Dissertations

”Smaller is better” is the mantra that has driven semiconductor industry for the past 50 years. The on-going quest for faster electronic switching, higher transistor density, and better device performance, has been driven by a self-fulfilling prophecy popularly known as Moore’s law, according to which the number of transistors per unit area of a chip doubles itself approximately every two years. A modern smartphone has about 8 billion transistors, which is as large as current earth’s population. Although each transistor dissipates negligible power, but the collective power dissipation from all the transistors in an electronic gadget and inefficient heat removing …


Tunable Compact Thz Devices Based On Graphene And Other 2d Material Metasurfaces, Tianjing Guo Jul 2020

Tunable Compact Thz Devices Based On Graphene And Other 2d Material Metasurfaces, Tianjing Guo

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Since the isolation of graphene in 2004, a large amount of research has been directed at 2D materials and their applications due to their unique characteristics. Compared with the noble metal plasmons in the visible and near-infrared frequencies, graphene can support surface plasmons in the lower frequencies of terahertz (THz) and midinfrared. Especially, the surface conductivity of graphene can be tuned by either chemical doping or electrostatic gating. As a result, the idea of designing graphene metasurfaces is attractive because of its ultra-broadband response and tunability.

It has been demonstrated theoretically and experimentally that the third-order nonlinearity of graphene at …


Organic-Inorganic Graphite And Transition Metal Dichalcogenide Based Composites For 3d Printing, Jorge Alfredo Catalan Gonzalez Jan 2017

Organic-Inorganic Graphite And Transition Metal Dichalcogenide Based Composites For 3d Printing, Jorge Alfredo Catalan Gonzalez

Open Access Theses & Dissertations

This project was multipronged to help fuse together topics of additive manufacturing and two-dimensional (2D) layered materials, and studying the mechanical and electrical properties of the composites produced. The composites are made from the thermoplastic polymer acting as a matrix and the graphite and 2D transition metal dichalcogenides (TMDs) serving as the filler or reinforcement. Different concentrations of TMD's were added to the matrix to study the effect of composition on the mechanical and electrical properties. To shed insights into the mechanical properties, test coupons were produced as "dog bone" structures for tensile testing using the ASTM D638 type 5 …


Synthesis, Device Fabrication, And Characterization Of Two-Dimensional Molybdenum Disulfide, Gustavo Alberto Lara Saenz Jan 2016

Synthesis, Device Fabrication, And Characterization Of Two-Dimensional Molybdenum Disulfide, Gustavo Alberto Lara Saenz

Open Access Theses & Dissertations

The miniaturization of electronic devices according to Moore's Law has been propelled by the continuous demand for faster and smaller devices which continue to advance technology. One recent contribution to this trend was the isolation and characterization of one atom thick of graphite, known as graphene, which led to the Nobel Prize in physics in 2010 being awarded to Andre Geim and Konstantin Novoselov. Graphene and its related nanocarbon derivatives have exceptional mechanical, thermal, optical and electronic properties, making them a potential candidate for electronics and optoelectronics applications. However, this material has no intrinsic bandgap and complicated processes are required …