Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics

Old Dominion University

Series

Articles 31 - 60 of 66

Full-Text Articles in Engineering

Secrecy Rates And Optimal Power Allocation For Full-Duplex Decode-And-Forward Relay Wire-Tap Channels, Lubna Elsaid, Leonardo Jimenez-Rodriguez, Nghi H. Tran, Sachin Shetty, Shivakumar Sastry Jan 2017

Secrecy Rates And Optimal Power Allocation For Full-Duplex Decode-And-Forward Relay Wire-Tap Channels, Lubna Elsaid, Leonardo Jimenez-Rodriguez, Nghi H. Tran, Sachin Shetty, Shivakumar Sastry

Computational Modeling & Simulation Engineering Faculty Publications

This paper investigates the secrecy rates and optimal power allocation schemes for a decode-and-forward wiretap relay channel where the transmission from a source to a destination is aided by a relay operating in a full-duplex (FD) mode under practical residual self-interference. By first considering static channels, we address the non-convex optimal power allocation problems between the source and relay nodes under individual and joint power constraints to establish closed-form solutions. An asymptotic analysis is then given to provide important insights on the derived power allocation solutions. Specifically, by using the method of dominant balance, it is demonstrated that full power …


Semantic Inference On Clinical Documents: Combining Machine Learning Algorithms With An Inference Engine For Effective Clinical Diagnosis And Treatment, Shuo Yang, Ran Wei, Jingzhi Guo, Lida Xu Jan 2017

Semantic Inference On Clinical Documents: Combining Machine Learning Algorithms With An Inference Engine For Effective Clinical Diagnosis And Treatment, Shuo Yang, Ran Wei, Jingzhi Guo, Lida Xu

Information Technology & Decision Sciences Faculty Publications

Clinical practice calls for reliable diagnosis and optimized treatment. However, human errors in health care remain a severe issue even in industrialized countries. The application of clinical decision support systems (CDSS) casts light on this problem. However, given the great improvement in CDSS over the past several years, challenges to their wide-scale application are still present, including: 1) decision making of CDSS is complicated by the complexity of the data regarding human physiology and pathology, which could render the whole process more time-consuming by loading big data related to patients; and 2) information incompatibility among different health information systems (HIS) …


Qos Recommendation In Cloud Services, Xianrong Zheng, Li Da Xu, Sheng Chai Jan 2017

Qos Recommendation In Cloud Services, Xianrong Zheng, Li Da Xu, Sheng Chai

Information Technology & Decision Sciences Faculty Publications

As cloud computing becomes increasingly popular, cloud providers compete to offer the same or similar services over the Internet. Quality of service (QoS), which describes how well a service is performed, is an important differentiator among functionally equivalent services. It can help a firm to satisfy and win its customers. As a result, how to assist cloud providers to promote their services and cloud consumers to identify services that meet their QoS requirements becomes an important problem. In this paper, we argue for QoS-based cloud service recommendation, and propose a collaborative filtering approach using the Spearman coefficient to recommend cloud …


Rapid And Accurate C-V Measurements, Ji-Hong Kim, Pragya R. Shrestha, Jason P. Campbell, Jason T. Ryan, David Nminibapiel, Joseph J. Kopanski Jan 2016

Rapid And Accurate C-V Measurements, Ji-Hong Kim, Pragya R. Shrestha, Jason P. Campbell, Jason T. Ryan, David Nminibapiel, Joseph J. Kopanski

Electrical & Computer Engineering Faculty Publications

We report a new technique for the rapid measurement of full capacitance-voltage (C-V) characteristic curves. The displacement current from a 100-MHz applied sine wave, which swings from accumulation to strong inversion, is digitized directly using an oscilloscope from the MOS capacitor under test. A C-V curve can be constructed directly from this data but is severely distorted due to nonideal behavior of real measurement systems. The key advance of this paper is to extract the system response function using the same measurement setup and a known MOS capacitor. The system response correction to the measured C-V curve of the unknown …


Electrosensitization Assists Cell Ablation By Nanosecond Pulsed Electric Field In 3d Cultures, Claudia Muratori, Andrei G. Pakhomov, Shu Xiao, Olga N. Pakhomova Jan 2016

Electrosensitization Assists Cell Ablation By Nanosecond Pulsed Electric Field In 3d Cultures, Claudia Muratori, Andrei G. Pakhomov, Shu Xiao, Olga N. Pakhomova

Bioelectrics Publications

Previous studies reported a delayed increase of sensitivity to electroporation (termed "electrosensitization") in mammalian cells that had been subjected to electroporation. Electrosensitization facilitated membrane permeabilization and reduced survival in cell suspensions when the electric pulse treatments were split in fractions. The present study was aimed to visualize the effect of sensitization and establish its utility for cell ablation. We used KLN 205 squamous carcinoma cells embedded in an agarose gel and cell spheroids in Matrigel. A local ablation was created by a train of 200 to 600 of 300-ns pulses (50 Hz, 300-600 V) delivered by a two-needle probe with …


Supporting Business Privacy Protection In Wireless Sensor Networks, Nan Feng, Zhiqi Hao, Sibo Yang, Harris Wu Jan 2016

Supporting Business Privacy Protection In Wireless Sensor Networks, Nan Feng, Zhiqi Hao, Sibo Yang, Harris Wu

Information Technology & Decision Sciences Faculty Publications

With the pervasive use of wireless sensor networks (WSNs) within commercial environments, business privacy leakage due to the exposure of sensitive information transmitted in a WSN has become a major issue for enterprises. We examine business privacy protection in the application of WSNs. We propose a business privacy-protection system (BPS) that is modeled as a hierarchical profile in order to filter sensitive information with respect to enterprise-specified privacy requirements. The BPS aims at solving a tradeoff between metrics that are defined to estimate the utility of information and the business privacy risk. We design profile, risk assessment, and filtration agents …


Electrokinetic Phenomena In Pencil Lead-Based Microfluidics, Yashar Bashirzadeh, Venkat Maruthamuthu, Shizhi Qian Jan 2016

Electrokinetic Phenomena In Pencil Lead-Based Microfluidics, Yashar Bashirzadeh, Venkat Maruthamuthu, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

Fabrication of microchannels and associated electrodes to generate electrokinetic phenomena often involves costly materials and considerable effort. In this study, we used graphite pencil-leads as low cost, disposable 3D electrodes to investigate various electrokinetic phenomena in straight cylindrical microchannels, which were themselves fabricated by using a graphite rod as the microchannel mold. Individual pencil-leads were employed as the micro-electrodes arranged along the side walls of the microchannel. Efficient electrokinetic phenomena provided by the 3D electrodes, including alternating current electroosmosis (ACEO), induced-charge electroosmosis (ICEO), and dielectrophoresis (DEP), were demonstrated by the introduced pencil-lead based microfluidic devices. The electrokinetic phenomena were characterized …


Electroporation Of Mammalian Cells By Nanosecond Electric Field Oscillations And It's Inhibition By The Electric Field Reversal, Elena C. Gianulis, Jimo Lee, Chunqi Jiang, Shu Xiao, Bennet L. Ibey, Andrei G. Pakhomov Jan 2015

Electroporation Of Mammalian Cells By Nanosecond Electric Field Oscillations And It's Inhibition By The Electric Field Reversal, Elena C. Gianulis, Jimo Lee, Chunqi Jiang, Shu Xiao, Bennet L. Ibey, Andrei G. Pakhomov

Bioelectrics Publications

The present study compared electroporation efficiency of bipolar and unipolar nanosecond electric field oscillations (NEFO). Bipolar NEFO was a damped sine wave with 140 ns first phase duration at 50% height; the peak amplitude of phases 2-4 decreased to 35%, 12%, and 7% of the first phase. This waveform was rectified to produce unipolar NEFO by cutting off phases 2 and 4. Membrane permeabilization was quantified in CHO and GH3 cells by uptake of a membrane integrity marker dye YO-PRO-1 (YP) and by the membrane conductance increase measured by patch clamp. For treatments with 1-20 unipolar NEFO, at 9.6-24 …


Spark Discharge Coupled Laser Multicharged Ion Source, Md. Haider A. Shaim, Hani E. Elsayed-Ali Jan 2015

Spark Discharge Coupled Laser Multicharged Ion Source, Md. Haider A. Shaim, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

A spark discharge is coupled to a laser multicharged ion source to enhance ion generation. The laser plasma triggers a spark discharge with electrodes located in front of the ablated target. For an aluminum target, the spark discharge results in significant enhancement in the generation of multicharged ions along with higher charge states than observed with the laser source alone. When a Nd:YAG laser pulse (wavelength 1064 nm, pulse width 7.4 ns, pulse energy 72 mJ, laser spot area on target 0.0024 cm2) is used, the total multicharged ions detected by a Faraday cup is 1.0 nC with …


Counting And Classification Of Highway Vehicles By Regression Analysis, Mingpei Liang, Xinyu Huang, Chung-Hao Chen, Alade Tokuta Jan 2015

Counting And Classification Of Highway Vehicles By Regression Analysis, Mingpei Liang, Xinyu Huang, Chung-Hao Chen, Alade Tokuta

Electrical & Computer Engineering Faculty Publications

In this paper, we describe a novel algorithm that counts and classifies highway vehicles based on regression analysis. This algorithm requires no explicit segmentation or tracking of individual vehicles, which is usually an important part of many existing algorithms. Therefore, this algorithm is particularly useful when there are severe occlusions or vehicle resolution is low, in which extracted features are highly unreliable. There are mainly two contributions in our proposed algorithm. First, a warping method is developed to detect the foreground segments that contain unclassified vehicles. The common used modeling and tracking (e.g., Kalman filtering) of individual vehicles are not …


Special Issue On Wireless Sensor And Actuator Networks, Jiming Chen, Karl H. Johanson, Stephan Olariu, Ioannis Ch. Paschalidis, Ivan Stojmenovic Jan 2011

Special Issue On Wireless Sensor And Actuator Networks, Jiming Chen, Karl H. Johanson, Stephan Olariu, Ioannis Ch. Paschalidis, Ivan Stojmenovic

Computer Science Faculty Publications

( First paragraph) WIRELESS Sensor Networks (WSNs), in their various shapes and forms, have greatly facilitated and enhanced the automated, remote, and intelligent monitoring of a large variety of physical systems. These networks consist of a large number of typically small devices, each incorporating sensing, processing, and wireless communications capabilities. Their use has penetrated a plethora of application domains from industrial and building automation, to environmental, wildlife, and health monitoring.


Kilovolt Blumlein Pulse Generator With Variable Pulse Duration And Polarity, Andrea De Angelis, Juergen F. Kolb, Luigi Zeni, Karl H. Schoenbach Jan 2008

Kilovolt Blumlein Pulse Generator With Variable Pulse Duration And Polarity, Andrea De Angelis, Juergen F. Kolb, Luigi Zeni, Karl H. Schoenbach

Bioelectrics Publications

A Blumlein pulse generator which utilizes the superposition of electrical pulses launched from two individually switched pulse forming lines has been designed and tested. By using a power metal-oxide-semiconductor field-effect transistor as a switch on each end of the Blumlein line, we were able to generate pulses with amplitudes of 1kV across a 100Ω load. Pulse duration and polarity can be controlled by the temporal delay in the triggering of the two switches. Using this technique, we have demonstrated the generation of pulses with durations between 8 and 60ns. The lower limit in pulse duration was determined by the switch …


Predicted Properties Of Microhollow Cathode Discharges In Xenon, J. P. Boeuf, L. C. Pitchford, K. H. Schoenbach Jan 2005

Predicted Properties Of Microhollow Cathode Discharges In Xenon, J. P. Boeuf, L. C. Pitchford, K. H. Schoenbach

Bioelectrics Publications

A fluid model has been developed and used to help clarify the physical mechanisms occurring in microhollow cathode discharges (MHCD). Calculated current-voltage (I-V) characteristics and gas temperatures in xenon at 100 Torr are presented. Consistent with previous experimental results in similar conditions, we find a voltage maximum in the I-V characteristic. We show that this structure reflects a transition between a low-current, abnormal discharge localized inside the cylindrical hollow cathode to a higher-current, normal glow discharge sustained by electron emission from the outer surface of the cathode. This transition, due to the geometry of …


Microbubble-Based Model Analysis Of Liquid Breakdown Initiation By A Submicrosecond Pulse, J. Qian, R. P. Joshi, K. H. Schoenbach, J. Dickens, A. Neuber, M. Butcher, M. Cevallos, H. Krompholz, E. Schamiloglu, J. Gaudet Jan 2005

Microbubble-Based Model Analysis Of Liquid Breakdown Initiation By A Submicrosecond Pulse, J. Qian, R. P. Joshi, K. H. Schoenbach, J. Dickens, A. Neuber, M. Butcher, M. Cevallos, H. Krompholz, E. Schamiloglu, J. Gaudet

Electrical & Computer Engineering Faculty Publications

An electrical breakdown model for liquids in response to a submicrosecond(∼100ns) voltage pulse is presented, and quantitative evaluations carried out. It is proposed that breakdown is initiated by field emission at the interface of pre-existing microbubbles. Impact ionization within the microbubble gas then contributes to plasma development, with cathode injection having a delayed and secondary role. Continuous field emission at the streamer tip contributes to filament growth and propagation. This model can adequately explain almost all of the experimentally observed features, including dendritic structures and fluctuations in the prebreakdown current. Two-dimensional, time-dependent simulations have been carried out based on a …


Microscopic Analysis For Water Stressed By High Electric Fields In The Prebreakdown Regime, R. P. Joshi, J. Qian, K. H. Schoenbach, E. Schamiloglu Jan 2004

Microscopic Analysis For Water Stressed By High Electric Fields In The Prebreakdown Regime, R. P. Joshi, J. Qian, K. H. Schoenbach, E. Schamiloglu

Bioelectrics Publications

Analysis of the electrical double layer at the electrode-water interface for voltages close to the breakdown point has been carried out based on a static, Monte Carlo approach. It is shown that strong dipole realignment, ion-ion correlation, and finite-size effects can greatly modify the electric fields and local permittivity (hence, leading to optical structure) at the electrode interface. Dramatic enhancements of Schottky injection, providing a source for electronic controlled breakdown, are possible. It is also shown that large pressures associated with the Maxwell stress tensor would be created at the electrode boundaries. Our results depend on the ionic density, and …


Are Microbubbles Necessary For The Breakdown Of Liquid Water Subjected To A Submicrosecond Pulse?, R. P. Joshi, J. Qian, G. Zhao, J. Kolb, K. H. Schoenbach, E. Schamiloglu, J. Gaudet Jan 2004

Are Microbubbles Necessary For The Breakdown Of Liquid Water Subjected To A Submicrosecond Pulse?, R. P. Joshi, J. Qian, G. Zhao, J. Kolb, K. H. Schoenbach, E. Schamiloglu, J. Gaudet

Electrical & Computer Engineering Faculty Publications

Electrical breakdown in homogeneous liquid water for an ∼ 100 ns voltage pulse is analyzed. It is shown that electron-impact ionization is not likely to be important and could only be operative for low-density situations or possibly under optical excitation. Simulation results also indicate that field ionization of liquid water can lead to a liquid breakdown provided the ionization energies were very low in the order of 2.3eV. Under such conditions, an electric-field collapse at the anode and plasma propagation toward the cathode, with minimal physical charge transport, is predicted. However, the low, unphysical ionization energies necessary for matching …


Electrical Network-Based Time-Dependent Model Of Electrical Breakdown In Water, R. P. Joshi, J. Qian, K. H. Schoenbach Jan 2002

Electrical Network-Based Time-Dependent Model Of Electrical Breakdown In Water, R. P. Joshi, J. Qian, K. H. Schoenbach

Bioelectrics Publications

A time-dependent, two-dimensional, percolative approach to model dielectric breakdown based on a network of parallel resistor–capacitor elements having random values, has been developed. The breakdown criteria rely on a threshold electric field and on energy dissipation exceeding the heat of vaporization. By carrying out this time-dependent analysis, the development and propagation of streamers and prebreakdown dynamical evolution have been obtained directly. These model simulations also provide the streamer shape, characteristics such as streamer velocity, the prebreakdown delay time, time-dependent current, and relationship between breakdown times, and applied electric fields for a given geometry. The results agree well with experimental data …


Improved Energy Model For Membrane Electroporation In Biological Cells Subjected To Electrical Pulses, R. P. Joshi, Q. Hu, K. H. Schoenbach, H. P. Hjalmarson Jan 2002

Improved Energy Model For Membrane Electroporation In Biological Cells Subjected To Electrical Pulses, R. P. Joshi, Q. Hu, K. H. Schoenbach, H. P. Hjalmarson

Bioelectrics Publications

A self-consistent model analysis of electroporation in biological cells has been carried out based on an improved energy model. The simple energy model used in the literature is somewhat incorrect and unphysical for a variety of reasons. Our model for the pore formation energy E(r) includes a dependence on pore population and density. It also allows for variable surface tension, incorporates the effects of finite conductivity on the electrostatic correction term, and is dynamic in nature. Self-consistent calculations, based on a coupled scheme involving the Smoluchowski equation and the improved energy model, are presented. It is shown that E(r) becomes …


Mechanism For Membrane Electroporation Irreversibility Under High-Intensity, Ultrashort Electrical Pulse Conditions, R. P. Joshi, K. H. Schoenbach Jan 2002

Mechanism For Membrane Electroporation Irreversibility Under High-Intensity, Ultrashort Electrical Pulse Conditions, R. P. Joshi, K. H. Schoenbach

Bioelectrics Publications

An improved electroporation model is used to address membrane irreversibility under ultrashort electric pulse conditions. It is shown that membranes can survive a strong electric pulse and recover provided the pore distribution has a relatively large spread. If, however, the population consists predominantly of larger radii pores, then irreversibility can result. Physically, such a distribution could arise if pores at adjacent sites coalesce. The requirement of close proximity among the pore sites is more easily satisfied in smaller organelles than in outer cell membranes. Model predictions are in keeping with recent observations of cell damage to intracellular organelles (e.g., mitochondria), …


121.6 Nm Radiation Source For Advanced Lithography, Jianxun Yan, Ashraf El-Dakrouri, Mounir Laroussi, Mool C. Gupta Jan 2002

121.6 Nm Radiation Source For Advanced Lithography, Jianxun Yan, Ashraf El-Dakrouri, Mounir Laroussi, Mool C. Gupta

Electrical & Computer Engineering Faculty Publications

A vacuum ultraviolet (VUV) light source based on a high-pressure cylindrical dielectric barrier discharge (DBD) has been developed. Intense and spectrally clean Lyman-α line at 121.6 nm was obtained by operating a DBD discharge in neon with a small admixture of hydrogen. The spectrum, optical power, stability, and efficiency of the source were measured. The influence of the gas mixture and total gas pressure on the VUV intensity has been investigated. Maximum optical power of 3.2 W and spectral width 0.03 nm was achieved. Power stability of 2% for 100 h of operation has also been obtained. The newly developed …


Electroporation Dynamics In Biological Cells Subjected To Ultrafast Electrical Pulses: A Numerical Simulation Study, R. P. Joshi, K. H. Schoenbach Jan 2000

Electroporation Dynamics In Biological Cells Subjected To Ultrafast Electrical Pulses: A Numerical Simulation Study, R. P. Joshi, K. H. Schoenbach

Bioelectrics Publications

A model analysis of electroporation dynamics in biological cells has been carried out based on the Smoluchowski equation. Results of the cellular response to short, electric pulses are presented, taking account of the growth and resealing dynamics of transient aqueous pores. It is shown that the application of large voltages alone may not be sufficient to cause irreversible breakdown, if the time duration is too short. Failure to cause irreversible damage at small pulse widths could be attributed to the time inadequacy for pores to grow and expand beyond a critical threshold radius. In agreement with earlier studies, it is …


Series Operation Of Direct Current Xenon Chloride Excimer Sources, Ahmed El-Habachi, Wenhui Shi, Mohamed Moselhy, Robert H. Stark, Karl H. Schoenbach Jan 2000

Series Operation Of Direct Current Xenon Chloride Excimer Sources, Ahmed El-Habachi, Wenhui Shi, Mohamed Moselhy, Robert H. Stark, Karl H. Schoenbach

Bioelectrics Publications

Stable, direct current microhollow cathode discharges in mixtures of hydrochloric acid, hydrogen, xenon, and neon have been generated in a pressure range of 200–1150 Torr. The cathode hole diameter was 250 μm. Sustaining voltages range from 180 to 250 V at current levels of up to 5 mA. The discharges are strong sources of xenon chloride excimer emission at a wavelength of 308 nm. Internal efficiencies of approximately 3% have been reached at a pressure of 1050 Torr. The spectral radiant power at this pressure was measured as 5 mW/nm at 308 nm for a 3 mA discharge. By using …


Direct Current High-Pressure Glow Discharges, Robert H. Stark, Karl H. Schoenbach Jan 1999

Direct Current High-Pressure Glow Discharges, Robert H. Stark, Karl H. Schoenbach

Bioelectrics Publications

Stabilization and control of a high-pressure glow discharge by means of a microhollow cathode discharge has been demonstrated. The microhollow cathode discharge, which is sustained between two closely spaced electrodes with openings of approximately 100 μm diam, serves as plasma cathode for the high-pressure glow. Small variations in the microhollow cathode discharge voltage generate large variations in the microhollow cathode discharge current and consequently in the glow discharge current. In this mode of operation the electrical characteristic of this system of coupled discharges resembles that of a vacuum triode. Using the microhollow cathode discharge as plasma cathode it was possible …


Direct Current Glow Discharges In Atmospheric Air, Robert H. Stark, Karl H. Schoenbach Jan 1999

Direct Current Glow Discharges In Atmospheric Air, Robert H. Stark, Karl H. Schoenbach

Bioelectrics Publications

Direct current glow discharges have been operated in atmospheric air by using 100 μm microhollow cathode discharges as plasma cathodes. The glow discharges were operated at currents of up to 22 mA, corresponding to current densities of 3.8 A/cm2 and at average electric fields of 1.2 kV/cm. Electron densities in the glow are in the range from 1012 to 1013  cm−3. Varying the current of the microhollow cathode discharge allows us to control the current in the atmospheric pressure glow discharge. Large volume atmospheric pressure air plasmas can be generated by operating microhollow cathode discharges …


Emission Of Excimer Radiation From Direct Current, High-Pressure Hollow Cathode Discharge, Ahmed El-Habachi, Karl H. Schoenbach Jan 1998

Emission Of Excimer Radiation From Direct Current, High-Pressure Hollow Cathode Discharge, Ahmed El-Habachi, Karl H. Schoenbach

Bioelectrics Publications

A novel, nonequilibrium, high-pressure, direct current discharge, the microhollow cathode discharge, has been found to be an intense source of xenon and argon excimer radiation peaking at wavelengths of 170 and 130 nm, respectively. In argon discharges with a 100 μm diam hollow cathode, the intensity of the excimer radiation increased by a factor of 5 over the pressure range from 100 to 800 mbar. In xenon discharges, the intensity at 170 nm increased by two orders of magnitude when the pressure was raised from 250 mbar to 1 bar. Sustaining voltages were 200 V for argon and 400 V …


Electric Field Mapping System With Nanosecond Temporal Rosolution, F. E. Peterkin, R. Block, K. H. Schoenbach Jan 1995

Electric Field Mapping System With Nanosecond Temporal Rosolution, F. E. Peterkin, R. Block, K. H. Schoenbach

Bioelectrics Publications

The electric field dependence of the absorption coefficient in semi‐insulating GaAs at the absorption edge was measured in a high‐voltage pulsed experiment. Pulse duration was kept below 50 ns in order to avoid thermal effects. A GaAs laser diode was used as a probe light source with wavelength varied from 902 to 911 nm. For fields up to 40 kV/cm the absorption coefficient increased from 3 to 17 cm−1 at 902 nm, with smaller absolute increases evident at the longer wavelengths. Calculation from theory was consistent with this behavior. The spatial variation of the electric field was also recorded …


Supralinear Photoconductivity Of Copper Doped Semi-Insulating Gallium Arsenide, K. H. Schoenbach, R. P. Joshi, F. Peterkin, R. L. Druce Jan 1995

Supralinear Photoconductivity Of Copper Doped Semi-Insulating Gallium Arsenide, K. H. Schoenbach, R. P. Joshi, F. Peterkin, R. L. Druce

Bioelectrics Publications

We report on the intensity dependent supralinear photoconductivity in GaAs:Si:Cu material. The results of our measurements show that the effective carrier lifetime can change over two orders of magnitude with variations in the intensity of the optical excitation. A threshold intensity level has been observed and can be related to the occupancy of the deep copper level. Numerical simulations have also been carried out to analyze the trapping dynamics. The intensity dependent lifetimes obtained from the simulations match the experimental data very well. Finally, based on the nonlinear intensity dependence of the effective lifetimes, a possible low‐energy phototransistor application for …


Impact Of Field-Dependent Electronic Trapping Across Coulomb Repulsive Potentials On Low Frequency Charge Oscillations, R. P. Joshi, K. H. Schoenbach, P. K. Raha Jan 1994

Impact Of Field-Dependent Electronic Trapping Across Coulomb Repulsive Potentials On Low Frequency Charge Oscillations, R. P. Joshi, K. H. Schoenbach, P. K. Raha

Bioelectrics Publications

We have performed Monte Carlo simulations to obtain the field dependence of electronic trapping across repulsive potentials in GaAs. Such repulsive centers are associated with deep level impurities having multiply charged states. Our results reveal a field‐dependent maxima in the electronic capture coefficient, and the overall shape is seen to depend on the background electron density due to the effects of screening. Based on the Monte Carlo calculations, we have examined the stability of compensated semiconductors containing such repulsive centers. Our analysis indicates a potential for low frequency charge oscillations which is in keeping with available experimental data.


Studies Of Electron-Beam Penetration And Free-Carrier Generation In Diamond Films, R. P. Joshi, K. H. Schoenbach, C. Molina, W. W. Hofer Jan 1993

Studies Of Electron-Beam Penetration And Free-Carrier Generation In Diamond Films, R. P. Joshi, K. H. Schoenbach, C. Molina, W. W. Hofer

Bioelectrics Publications

Experimental observations of the energy‐dependent electron‐beam penetration in type II‐A natural diamond are reported. The experimental data are compared with results obtained from numerical Monte Carlo simulations, and the results are in very good agreement. The results also reveal that a threshold energy of about 125 keV is necessary for complete penetration for a 35 μm sample. It is found that over the 30–180 keV range, the energy dependence of the penetration depth and total path length exhibits a power‐law relation. Monte Carlo simulations have also been performed to investigate the excess carrier‐generation profiles within diamond for a set of …


Temporal Development Of Electric Field Structures In Photoconductive Gaas Switches, K. H. Schoenbach, J. S. Kenney, F.E. Peterkin, R. J. Allen Jan 1993

Temporal Development Of Electric Field Structures In Photoconductive Gaas Switches, K. H. Schoenbach, J. S. Kenney, F.E. Peterkin, R. J. Allen

Bioelectrics Publications

The temporal development of the electric field distribution in semi‐insulating GaAs photoconductive switches operated in the linear and lock‐on mode has been studied. The field structure was obtained by recording a change in the absorption pattern of the switch due to the Franz–Keldysh effect at a wavelength near the band edge of GaAs. In the linear mode, a high field layer develops at the cathode contact after laser activation. With increasing applied voltage, domainlike structures become visible in the anode region and the switch transits into the lock‐on state, a permanent filamentary electrical discharge. Calibration measurements show the field intensity …