Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 23 of 23

Full-Text Articles in Engineering

On The Design Of Coreless Permanent Magnet Machines For Electric Aircraft Propulsion, Damien Lawhorn, Peng Han, Donovin Lewis, Yaser Chulaee, Dan M. Ionel Jun 2021

On The Design Of Coreless Permanent Magnet Machines For Electric Aircraft Propulsion, Damien Lawhorn, Peng Han, Donovin Lewis, Yaser Chulaee, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

This paper presents design and prototyping studies for coreless and slotless permanent magnet (PM) machines, which have the potential for high power density and efficiency, and discusses their feasibility for electric aircraft propulsion. The emphasis is on axial flux permanent magnet (AFPM) machines with printed circuit board (PCB) stators that have advantages over their wired counterparts in terms of design flexibility, coil accuracy, manufacturing process reliability, and heat dissipation. Detailed electromagnetic finite element analysis models were developed and employed alongside analytical sizing equations to evaluate the performance of two dual-rotor single-stator coreless AFPM designs employing wave and spiral PCB winding …


Design Optimization And Comparison Of Direct-Drive Outer-Rotor Srms Based On Fast Current Profile Estimation And Transient Fea, Vandana Rallabandi, Peng Han, Jie Wu, Aaron M. Cramer, Dan M. Ionel, Ping Zhou Oct 2020

Design Optimization And Comparison Of Direct-Drive Outer-Rotor Srms Based On Fast Current Profile Estimation And Transient Fea, Vandana Rallabandi, Peng Han, Jie Wu, Aaron M. Cramer, Dan M. Ionel, Ping Zhou

Power and Energy Institute of Kentucky Faculty Publications

Outer-rotor switched reluctance machines (SRMs) have drawn much attention as promising candidates for in-wheel direct-drive motors of future electric vehicles. This article presents a systematic performance comparison of three outer-rotor SRM topologies for in-wheel traction applications in terms of the specific torque, electromagnetic efficiency, torque ripple, radial force, and mechanical aspects. A generalized design optimization framework for SRMs is proposed to enable the fast evaluation of large numbers of designs generated from the differential evolution by incorporating an analytical current profile estimation into the transient finite element analysis. The relationship between the saliency ratio and converter volt-ampere rating is also …


Optimal Study Of A High Specific Torque Vernier-Type Axial-Flux Pm Machine With Two Different Stators And A Single Winding, Murat G. Kesgin, Peng Han, Narges Taran, Dan M. Ionel Oct 2020

Optimal Study Of A High Specific Torque Vernier-Type Axial-Flux Pm Machine With Two Different Stators And A Single Winding, Murat G. Kesgin, Peng Han, Narges Taran, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

This paper presents the optimal study of a verniertype axial-flux permanent-magnet (AFPM) machine, which has a high-polarity spoke-type PM rotor, a wound stator with a low number of coils, and a profiled stator. Both stators have profiled teeth to enhance the magnetic interaction between the rotor PM array and stator windings for torque production. Compared to the topology with two wound stators, the studied one has a smaller total axial length and is expected more suitable for applications where the space is limited in axial direction. Both topologies are optimized through 3-dimensional (3D) finite element analysis (FEA) by the combined …


Comparative Study Of Winding Configurations Of A Five-Phase Flux-Switching Pm Machine, Hao Chen, Xiangdong Liu, Ayman M. El-Refaie, Jing Zhao, Nabeel Demerdash, Jiangbiao He Dec 2019

Comparative Study Of Winding Configurations Of A Five-Phase Flux-Switching Pm Machine, Hao Chen, Xiangdong Liu, Ayman M. El-Refaie, Jing Zhao, Nabeel Demerdash, Jiangbiao He

Electrical and Computer Engineering Faculty Research and Publications

This paper introduces a general method for determination of the most suitable winding configurations for five-phase flux-switching permanent magnet (FSPM) machines, associated with feasible stator/rotor-pole combinations. Consequently, the effect of winding configurations on the performance of a five-phase outer-rotor FSPM machine is thoroughly investigated, including non-overlapping concentrated windings (single-layer, double-layer, and multi-layer) as well as distributed winding. The electromagnetic characteristics in the low-speed region, the flux-weakening capability in the high-speed region, and the fault-tolerant capability under faulty situations are evaluated and compared in detail. This work shows that compared with the conventional single-layer or double-layer concentrated windings, the FSPM machine …


Toward A Sustainable More Electrified Future: The Role Of Electrical Machines And Drives, Ayman M. El-Refaie Mar 2019

Toward A Sustainable More Electrified Future: The Role Of Electrical Machines And Drives, Ayman M. El-Refaie

Electrical and Computer Engineering Faculty Research and Publications

This article provided an overview of the broad range of applications in which advanced electrical machines and drives play a key role. There are many applications that require steep change in the performance of electrical machines and drives. In addition to novel topologies and design optimization, a broad range of enabling technologies, including advanced materials and thermal management, will play a key role in meeting the ever-growing requirements of the aforementioned applications. Judging by the breadth of the applications and the very demanding requirements in terms of system footprint, efficiency cost, and reliability R&D efforts in the area of advanced …


Development Of Mr Clutch For A Prospective 5-Dof Robot, Sergey Pisetskiy, Mehrdad Kermani Ph.D., P.Eng. Oct 2018

Development Of Mr Clutch For A Prospective 5-Dof Robot, Sergey Pisetskiy, Mehrdad Kermani Ph.D., P.Eng.

Electrical and Computer Engineering Publications

This paper presents an improved design approach for the construction of a Magneto-Rheological (MR) clutch intended to be used in a prospective 5 degrees of freedom robot. The MR clutch features embedded Hall sensors for intrinsic torque control. After a brief description of the MR clutch principles, the details of the mechanical design are discussed. Simulation and preliminary experimental results demonstrate the main characteristics and advantages of the proposed MR clutch.


Simulation And Analysis Of Switched Reluctance Generator For Renewable Energy Applications, Simone Sartori, Malabika Basu, Michael Farrell, Andrea Tortella Jan 2017

Simulation And Analysis Of Switched Reluctance Generator For Renewable Energy Applications, Simone Sartori, Malabika Basu, Michael Farrell, Andrea Tortella

Conference papers

The purpose of the paper is to investigate the application of a Switched Reluctance Generator (SRG) for future wave energy converters. This machine presents some favourable features as compared to others. The machine optimal operation can be obtained after a detailed assessment of the control strategy. For this purpose, a SRG model is implemented in Matlab® Simulink® environment to find out the values of the switching angles which maximize the converted power and to set up an appropriate control of the power exchange with the grid to which the machine is connected. The simulation results provide evidence that a proper …


Optimal Design Of Ipm Motors With Different Cooling Systems And Winding Configurations, Alireza Fatemi, Dan M. Ionel, Nabeel Demerdash, Thomas W. Nehl Jul 2016

Optimal Design Of Ipm Motors With Different Cooling Systems And Winding Configurations, Alireza Fatemi, Dan M. Ionel, Nabeel Demerdash, Thomas W. Nehl

Electrical and Computer Engineering Faculty Research and Publications

Performance improvement of permanent magnet (PM) motors through optimization techniques has been widely investigated in the literature. Oftentimes the practice of design optimization leads to derivation/interpretation of optimal scaling rules of PM motors for a particular loading condition. This paper demonstrates how these derivations vary with respect to the machine ampere loading and ferrous core saturation level. A parallel sensitivity analysis using a second-order response surface methodology followed by a large-scale design optimization based on evolutionary algorithms are pursued in order to establish the variation of the relationships between the main design parameters and the performance characteristics with respect to …


A New Equivalent Circuit Of A Salient-Pole Synchronous Machine And Its Phasor Interpretation, Said Ahmed-Zaid, Danyal Mohammadi, Ahmed M.A. Oteafy Jan 2015

A New Equivalent Circuit Of A Salient-Pole Synchronous Machine And Its Phasor Interpretation, Said Ahmed-Zaid, Danyal Mohammadi, Ahmed M.A. Oteafy

Electrical and Computer Engineering Faculty Publications and Presentations

This paper examines a shortcoming of the classical phasor diagram of a salient-pole synchronous machine based on the well-established two-reaction theory. Unlike in the phasor diagram of a smooth-air-gap machine, it is not possible to readily identify the internally-developed electromagnetic power of a salient-pole synchronous machine from this phasor diagram. By defining new machine reactances, a single equivalent circuit of a salient-pole synchronous machine is proposed together with a phasor diagram where the internally-developed electromagnetic power is made apparent. The revised two-reaction theory is illustrated using the mathematical model of a two-phase salient-pole synchronous machine whose equations are manipulated using …


Design Considerations For Inertia Emulating Controllers Used In Variable Speed Wind Turbines, Lasantha Meegahapola, Amila Wickramasinghe, A P Agalgaonkar, S Perera Jul 2014

Design Considerations For Inertia Emulating Controllers Used In Variable Speed Wind Turbines, Lasantha Meegahapola, Amila Wickramasinghe, A P Agalgaonkar, S Perera

Dr Lasantha G Meegahapola

High penetration of wind power into power systems is likely to cause difficulties in maintaining system frequency, as in contrast to conventional synchronous generators, variable speed wind turbines (VSWTs) do not directly contribute to system inertia. To overcome this issue, it has been proposed to emulate inertia by VSWTs by extracting the kinetic energy of the turbine rotor. However, proper designing of the inertia emulating controller is essential for the optimal use of the energy potential and safe operation of the wind turbine. Some of the common controller concepts used for inertia emulation have inherent weaknesses, limiting the frequency support …


Calculation Of Magnet Losses In Concentrated-Winding Permanent-Magnet Synchronous Machines Using A Computationally Efficient Finite-Element Method, Peng Zhang, Gennadi Y. Sizov, Jiangbiao He, Dan M. Ionel, Nabeel Demerdash Nov 2013

Calculation Of Magnet Losses In Concentrated-Winding Permanent-Magnet Synchronous Machines Using A Computationally Efficient Finite-Element Method, Peng Zhang, Gennadi Y. Sizov, Jiangbiao He, Dan M. Ionel, Nabeel Demerdash

Electrical and Computer Engineering Faculty Research and Publications

The proposed hybrid method combines computationally efficient finite-element analysis (CE-FEA) with a new analytical formulation for eddy-current losses in the permanent magnets (PMs) of sine-wave current-regulated brushless synchronous motors. The CE-FEA only employs a reduced set of magnetostatic solutions yielding substantial reductions in the computational time, as compared with the conventional FEA. The 3-D end effects and the effect of pulsewidth-modulation switching harmonics are incorporated in the analytical calculations. The algorithms are applied to two fractional-slot concentrated-winding interior PM motors with different circumferential and axial PM block segmentation arrangements. The method is validated against 2-D and 3-D time-stepping FEA.


Modeling And Parametric Design Of Permanent-Magnet Ac Machines Using Computationally Efficient Finite-Element Analysis, Gennadi Y. Sizov, Dan M. Ionel, Nabeel Demerdash Jun 2012

Modeling And Parametric Design Of Permanent-Magnet Ac Machines Using Computationally Efficient Finite-Element Analysis, Gennadi Y. Sizov, Dan M. Ionel, Nabeel Demerdash

Electrical and Computer Engineering Faculty Research and Publications

Computationally efficient finite-element analysis (FEA) (CE-FEA) fully exploits the symmetries of electric and magnetic circuits of sine-wave current-regulated synchronous machines and yields substantial savings of computational efforts. Motor performance is evaluated through Fourier analysis and a minimum number of magnetostatic solutions. The major steady-state performance indices (average torque, ripple and cogging torque, back-electromotive-force waveforms, and core losses) are satisfactorily estimated as compared with the results of detailed time-stepping (transient) FEA. In this paper, the CE-FEA method is presented and applied to a parametric design study for an interior-permanent-magnet machine. Significant reduction of simulation times is achieved (approximately two orders of …


Digital Computer Simulation Of Electromagnetic Field Problems As Applied To The Design Of Electrical Machinery, K. S. Demirchian, V. V. Dombrovski, V. L. Chechurin, M. Sarma Feb 2012

Digital Computer Simulation Of Electromagnetic Field Problems As Applied To The Design Of Electrical Machinery, K. S. Demirchian, V. V. Dombrovski, V. L. Chechurin, M. Sarma

Sarma Mulukutla

The problem of electromagnetic field calculation in the end-zone of electrical machines is considered in this paper. A three-dimensional field requires using new methods of computing because the existing methods with the concept of vector potential demand unacceptable computer time. The new method consists of replacing the eddy magnetic field by the potential field of magnetic charges for the calculation of field, forces and associated inductances. Electrical currents of the rotor and stator windings are replaced by magnetic charges. it is possible to use just one scalar potential function for the computation instead of three components of the vector potential. …


Analysis And Diagnostics Of Adjacent And Nonadjacent Broken-Rotor-Bar Faults In Squirrel-Cage Induction Machines, Gennadi Y. Sizov, Ahmed Mohamed Sayed Ahmed, Chia-Chou Yeh, Nabeel Demerdash Nov 2009

Analysis And Diagnostics Of Adjacent And Nonadjacent Broken-Rotor-Bar Faults In Squirrel-Cage Induction Machines, Gennadi Y. Sizov, Ahmed Mohamed Sayed Ahmed, Chia-Chou Yeh, Nabeel Demerdash

Electrical and Computer Engineering Faculty Research and Publications

In this paper, faults associated with the rotor of an induction machine are considered. More specifically, effects of adjacent and nonadjacent bar breakages on rotor fault diagnostics in squirrel-cage induction machines are studied. It is shown that some nonadjacent bar breakages may result in the masking of the commonly used fault indices and, hence, may lead to a possible misdiagnosis of the machine. A discussion of the possible scenarios of these breakages as well as some conclusions regarding the types of squirrel-cage induction machines (number of poles, number of squirrel-cage bars, etc.) that may be more prone to these nonadjacent …


Coordinated Reactive Power Control Of A Large Wind Farm And A Statcom Using Heuristic Dynamic Programming, Wei Qiao, Ronald G. Harley, Ganesh K. Venayagamoorthy Jan 2009

Coordinated Reactive Power Control Of A Large Wind Farm And A Statcom Using Heuristic Dynamic Programming, Wei Qiao, Ronald G. Harley, Ganesh K. Venayagamoorthy

Electrical and Computer Engineering Faculty Research & Creative Works

A novel interface neurocontroller (INC) is proposed for the coordinated reactive power control between a large wind farm equipped with doubly fed induction generators (DFIGs) and a static synchronous compensator (STATCOM). The heuristic dynamic programming (HDP) technique and radial basis function neural networks (RBFNNs) are used to design this INC. It effectively reduces the level of voltage sags as well as the over-currents in the DFIG rotor circuit during grid faults, and therefore, significantly enhances the fault ride-through capability of the wind farm. The INC also acts as a coordinated external damping controller for the wind farm and the STATCOM, …


A Reconfigurable Motor For Experimental Emulation Of Stator Winding Inter-Turn And Broken Bar Faults In Polyphase Induction Machines (Journal Article), Chia-Chou Yeh, Gennadi Y. Sizov, Ahmed Sayed-Ahmed, Nabeel Demerdash, Richard J. Povinelli, Edwin E. Yaz, Dan M. Ionel Dec 2008

A Reconfigurable Motor For Experimental Emulation Of Stator Winding Inter-Turn And Broken Bar Faults In Polyphase Induction Machines (Journal Article), Chia-Chou Yeh, Gennadi Y. Sizov, Ahmed Sayed-Ahmed, Nabeel Demerdash, Richard J. Povinelli, Edwin E. Yaz, Dan M. Ionel

Electrical and Computer Engineering Faculty Research and Publications

The benefits and drawbacks of a 5-hp reconfigurable induction motor, which was designed for experimental emulation of stator winding interturn and broken rotor bar faults, are presented in this paper. It was perceived that this motor had the potential of quick and easy reconfiguration to produce the desired stator and rotor faults in a variety of different fault combinations. Hence, this motor was anticipated to make a useful test bed for evaluation of the efficacy of existing and new motor fault diagnostics techniques and not the study of insulation failure mechanisms. Accordingly, it was anticipated that this reconfigurable motor would …


On Innovative Methods Of Induction Motor Interturn And Broken-Bar Fault Diagnostics, Behrooz Mirafzal, Nabeel Demerdash Mar 2006

On Innovative Methods Of Induction Motor Interturn And Broken-Bar Fault Diagnostics, Behrooz Mirafzal, Nabeel Demerdash

Electrical and Computer Engineering Faculty Research and Publications

A fault indicator, the so-called swing angle, for broken-bar and interturn faults is investigated in this paper. This fault indicator is based on the rotating magnetic-field pendulous-oscillation concept in faulty squirrel-cage induction motors. Using the "swing-angle indicator," it will be demonstrated here that an interturn fault can be detected even in the presence of machine manufacturing imperfections. Meanwhile, a broken-bar fault can be detected under both direct-line and PWM excitations, even under the more difficult condition of partial-load levels. These two conditions of partial load and motor manufacturing imperfections, which are considered as difficult situations for fault detection, are investigated …


Effects Of Load Magnitude On Diagnosing Broken Bar Faults In Induction Motors Using The Pendulous Oscillation Of The Rotor Magnetic Field Orientation, Behrooz Mirafzal, Nabeel Demerdash May 2005

Effects Of Load Magnitude On Diagnosing Broken Bar Faults In Induction Motors Using The Pendulous Oscillation Of The Rotor Magnetic Field Orientation, Behrooz Mirafzal, Nabeel Demerdash

Electrical and Computer Engineering Faculty Research and Publications

The effects of load level on the ability to diagnose broken bar faults in squirrel-cage induction motors are studied in this paper. The pendulous oscillation of the rotor magnetic field orientation is implemented as a fault signature for rotor fault diagnostic purposes at steady-state operations. Moreover, the effects of load level on the low-side band component of the stator current spectrum, and associated diagnostic difficulties in this approach particularly in the presence of motor operation from pulsewidth-modulation drives, are reported as well. These investigations were performed through testing 2-hp and 5-hp induction motors over a wide range of load levels …


Condition Monitoring Of Squirrel-Cage Induction Motors Fed By Pwm-Based Drives Using A Parameter Estimation Approach, Behrooz Mirafzal, F. Fateh, Chia-Chou Yeh, Richard J. Povinelli, Nabeel Demerdash Nov 2004

Condition Monitoring Of Squirrel-Cage Induction Motors Fed By Pwm-Based Drives Using A Parameter Estimation Approach, Behrooz Mirafzal, F. Fateh, Chia-Chou Yeh, Richard J. Povinelli, Nabeel Demerdash

Electrical and Computer Engineering Faculty Research and Publications

Abstract:

A rotor condition monitoring technique is presented in this paper based on a parameter estimation approach. In this technique, the stator currents, voltages and motor speed are used as the input signals, where the outputs will be the rotor's inductance, resistance and consequently rotor time constant. This approach is verified by simulation of two different induction motor cases. These simulations are buttressed by experimental data obtained for a 2-hp induction motor in the case of healthy as well as one, three and five rotor bar breakages. In these tests, the induction motor was energized from a PWM-based drive, in …


Day 1: Wednesday, August 4, 2004: Ponnequin Wind Farm, Western Resource Advocates Aug 2004

Day 1: Wednesday, August 4, 2004: Ponnequin Wind Farm, Western Resource Advocates

Energy Field Tour 2004 (August 4-6)

2 pages (includes illustration).


Induction Machine Broken-Bar Fault Diagnosis Using The Rotor Magnetic Field Space-Vector Orientation, Behrooz Mirafzal, Nabeel Demerdash Mar 2004

Induction Machine Broken-Bar Fault Diagnosis Using The Rotor Magnetic Field Space-Vector Orientation, Behrooz Mirafzal, Nabeel Demerdash

Electrical and Computer Engineering Faculty Research and Publications

A new technique based on rotor magnetic field space vector orientation is presented to diagnose broken-bar faults in induction machines operating at steady state. In this technique, stator currents and voltages are used as inputs to compute and subsequently observe the rotor magnetic field orientation, which has a more significant "swing-like" pendulous oscillation in case of broken-bar faults than in healthy operation. It will be shown here that the range of this "pendulous oscillation" is a function of the number of broken bars. Also in this technique, it was found that an inter-turn shorted stator-winding fault, which exhibits similar pendulous …


New External Neuro-Controller For Series Capacitive Reactance Compensator In A Power Network, Jung-Wook Park, Ganesh K. Venayagamoorthy, Ronald G. Harley Jan 2004

New External Neuro-Controller For Series Capacitive Reactance Compensator In A Power Network, Jung-Wook Park, Ganesh K. Venayagamoorthy, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

The controllable capacitive reactance can be used as the input variable for the external controller of a series capacitive reactance compensator (SCRC) to improve the damping of low-frequency oscillations of the rotor angle and active power in a power system. Conventional linear PI controllers are tuned for best performance at one specific operating point of the nonlinear power system. At other operating point its performance degrades. Nonlinear optimal neuro-controllers are able to overcome this degradation. In this paper, the dual heuristic dynamic programming (DHP) optimization algorithm is applied to design an external nonlinear optimal neuro-controller for the SCRC. Simulation studies …


A Hybrid Observer For High Performance Brushless Dc Motor Drives, Keith Corzine, S. D. Sudhoff Jan 1996

A Hybrid Observer For High Performance Brushless Dc Motor Drives, Keith Corzine, S. D. Sudhoff

Electrical and Computer Engineering Faculty Research & Creative Works

Brushless DC motor drive systems are used in a wide variety of applications. These drives may be classified as being one of two types: sinusoidal drives in which there are no low-frequency harmonics in the current waveforms and no low-frequency torque ripple; and nonsinusoidal drives in which there is considerable low-frequency harmonic content, both in the current and torque waveforms. Although sinusoidal drives feature superior performance, they are generally more expensive since rotor position must be sensed on a continuous basis, thus requiring an optical encoder or a resolver, whereas relatively inexpensive Hall-effect sensors may be used for nonsinusoidal drives. …