Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

2008

Neurocontrollers

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Implementation Of Neuroidentifiers Trained By Pso On A Plc Platform For A Multimachine Power System, Curtis Alan Parrott, Ganesh K. Venayagamoorthy Sep 2008

Implementation Of Neuroidentifiers Trained By Pso On A Plc Platform For A Multimachine Power System, Curtis Alan Parrott, Ganesh K. Venayagamoorthy

Electrical and Computer Engineering Faculty Research & Creative Works

Power systems are nonlinear with fast changing dynamics. In order to design a nonlinear adaptive controller for damping power system oscillations, it becomes necessary to identify the dynamics of the system. This paper demonstrates the implementation of a neural network based system identifier, referred to as a neuroidentifier, on a programmable logic controller (PLC) platform. Two separate neuroidentifiers are trained using the particle swarm optimization (PSO) algorithm to identify the dynamics in a two-area four machine power system, one neuroidentifier for Area 1 and the other for Area 2. The power system is simulated in real time on the Real …


Output Feedback Controller For Operation Of Spark Ignition Engines At Lean Conditions Using Neural Networks, Jonathan B. Vance, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier Mar 2008

Output Feedback Controller For Operation Of Spark Ignition Engines At Lean Conditions Using Neural Networks, Jonathan B. Vance, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier

Electrical and Computer Engineering Faculty Research & Creative Works

Spark ignition (SI) engines operating at very lean conditions demonstrate significant nonlinear behavior by exhibiting cycle-to-cycle bifurcation of heat release. Past literature suggests that operating an engine under such lean conditions can significantly reduce NO emissions by as much as 30% and improve fuel efficiency by as much as 5%-10%. At lean conditions, the heat release per engine cycle is not close to constant, as it is when these engines operate under stoichiometric conditions where the equivalence ratio is 1.0. A neural network controller employing output feedback has shown ability in simulation to reduce the nonlinear cyclic dispersion observed under …