Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Machine Learning For Intrusion Detection Into Unmanned Aerial System 6g Networks, Faisal Alrefaei May 2024

Machine Learning For Intrusion Detection Into Unmanned Aerial System 6g Networks, Faisal Alrefaei

Doctoral Dissertations and Master's Theses

Progress in the development of wireless network technology has played a crucial role in the evolution of societies and provided remarkable services over the past decades. It remotely offers the ability to execute critical missions and effective services that meet the user's needs. This advanced technology integrates cyber and physical layers to form cyber-physical systems (CPS), such as the Unmanned Aerial System (UAS), which consists of an Unmanned Aerial Vehicle (UAV), ground network infrastructure, communication link, etc. Furthermore, it plays a crucial role in connecting objects to create and develop the Internet of Things (IoT) technology. Therefore, the emergence of …


Breast Cancer Risk In Women With Breast Bilateral Asymmetry: Machine Learning Based Risk Analysis And Mitigation Through Developing A Framework For Customized Bra Design, Xi Feng Apr 2024

Breast Cancer Risk In Women With Breast Bilateral Asymmetry: Machine Learning Based Risk Analysis And Mitigation Through Developing A Framework For Customized Bra Design, Xi Feng

Electronic Thesis and Dissertation Repository

Breast cancer is the most prevalent form of cancer globally, accounting for 12.5% of all new cases annually. Research has found a significant correlation between breast bilateral asymmetry and an increased risk of cancer, with women diagnosed with breast cancer having higher levels of bilateral asymmetrical breast volume. Unfortunately, 87% of women with breast asymmetry lack adequate tools for assessing their cancer risk. Early screening using bilateral asymmetry to predict a woman's long-term risk of breast cancer can help physicians make informed decisions about whether to recommend sequential imaging and the frequency of screening. Another important factor in understanding the …


Machine Learning Classifiers For Chronic Obstructive Pulmonary Disease Assessment Using Lung Ct Data., Halimah Alsurayhi Apr 2024

Machine Learning Classifiers For Chronic Obstructive Pulmonary Disease Assessment Using Lung Ct Data., Halimah Alsurayhi

Electronic Thesis and Dissertation Repository

Chronic Obstructive Pulmonary Disease (COPD) is a condition characterized by persistent inflammation and airflow blockages in the lungs, contributing to a significant number of deaths globally each year. To guide tailored treatment strategies and mitigate future risks, the Global Initiative for Chronic Obstructive Lung Disease (GOLD) employs a multifaceted assessment system of COPD severity, considering patient's lung function, symptoms, and exacerbation history. COPD staging systems, such as the high-resolution eight-stage COPD system and the GOLD 2023 three staging systems, have been later developed based on these factors. Lung Computed Tomography (CT) is becoming increasingly crucial in investigating COPD as it …


Incorporating Machine Learning With Satellite Data To Support Critical Infrastructure Measurement And Sustainable Development, Aggrey Muhebwa Mar 2024

Incorporating Machine Learning With Satellite Data To Support Critical Infrastructure Measurement And Sustainable Development, Aggrey Muhebwa

Doctoral Dissertations

Under the umbrella concept of Artificial Intelligence (AI) for good, recent advances in machine learning and large-scale data analysis have opened new opportunities to solve humanity’s most pressing challenges. Improvements in computation complexity and advances in AI (e.g., Vision Transformers) have led to faster and more effective techniques for extracting high-dimensional patterns from large-scale heterogeneous datasets (big data). Further, as satellite data become increasingly available at varying temporal-spatial resolutions, AI tools are helping us to better understand the underlying causes of environmental and socioeconomic changes at an unprecedented scale, ushering in an era of data-driven decision-making to support sustainable and …


Exploring Machine Learning Techniques For Embedded Hardware, Neel R. Vora Jan 2024

Exploring Machine Learning Techniques For Embedded Hardware, Neel R. Vora

Computer Science and Engineering Theses

This thesis delves into the intricate symbiosis between machine learning (ML) methodologies and embedded hardware systems, with a primary focus on augmenting efficiency and real-time processing capabilities across diverse application domains. It confronts the formidable challenge of deploying sophisticated ML algorithms on resource-constrained embedded hardware, aiming not only to optimize performance but also to minimize energy consumption. Innovative strategies are explored to tailor ML models for streamlined execution on embedded platforms, with validation conducted across various real-world application domains. Notable contributions include the development of a deep-learning framework leveraging a variational autoencoder (VAE) for compressing physiological signals from wearables while …


Data Driven And Machine Learning Based Modeling And Predictive Control Of Combustion At Reactivity Controlled Compression Ignition Engines, Behrouz Khoshbakht Irdmousa Jan 2024

Data Driven And Machine Learning Based Modeling And Predictive Control Of Combustion At Reactivity Controlled Compression Ignition Engines, Behrouz Khoshbakht Irdmousa

Dissertations, Master's Theses and Master's Reports

Reactivity Controlled Compression Ignition (RCCI) engines operates has capacity to provide higher thermal efficiency, lower particular matter (PM), and lower oxides of nitrogen (NOx) emissions compared to conventional diesel combustion (CDC) operation. Achieving these benefits is difficult since real-time optimal control of RCCI engines is challenging during transient operation. To overcome these challenges, data-driven machine learning based control-oriented models are developed in this study. These models are developed based on Linear Parameter-Varying (LPV) modeling approach and input-output based Kernelized Canonical Correlation Analysis (KCCA) approach. The developed dynamic models are used to predict combustion timing (CA50), indicated mean effective pressure (IMEP), …