Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Energy Efficiency In Additive Manufacturing: Condensed Review, Ismail Fidan, Vivekanand Naikwadi, Suhas Alkunte, Roshan Mishra, Khalid Tantawi Jan 2024

Energy Efficiency In Additive Manufacturing: Condensed Review, Ismail Fidan, Vivekanand Naikwadi, Suhas Alkunte, Roshan Mishra, Khalid Tantawi

Engineering Technology Faculty Publications

Today, it is significant that the use of additive manufacturing (AM) has growing in almost every aspect of the daily life. A high number of sectors are adapting and implementing this revolutionary production technology in their domain to increase production volumes, reduce the cost of production, fabricate light weight and complex parts in a short period of time, and respond to the manufacturing needs of customers. It is clear that the AM technologies consume energy to complete the production tasks of each part. Therefore, it is imperative to know the impact of energy efficiency in order to economically and properly …


Artificial Neural Network-Based Prediction Assessment Of Wire Electric Discharge Machining Parameters For Smart Manufacturing, Itagi Vijayakumar Manoj, Sannayellappa Narendranath, Peter Madindwa Mashinini, Hargovind Soni, Shanay Rab, Shadab Ahmad, Ahatsham Hayat Mar 2023

Artificial Neural Network-Based Prediction Assessment Of Wire Electric Discharge Machining Parameters For Smart Manufacturing, Itagi Vijayakumar Manoj, Sannayellappa Narendranath, Peter Madindwa Mashinini, Hargovind Soni, Shanay Rab, Shadab Ahmad, Ahatsham Hayat

Department of Electrical and Computer Engineering: Faculty Publications

Artificial intelligence (AI), robotics, cybersecurity, the Industrial Internet of Things, and blockchain are some of the technologies and solutions that are combined to produce “smart manufacturing,” which is used to optimize manufacturing processes by creating and/or accepting data. In manufacturing, spark erosion technique such as wire electric discharge machining (WEDM) is a process that machines different hard-to-cut alloys. It is regarded as the solution for cutting intricate parts and materials that are resistant to conventional machining techniques or are required by design. In the present study, holes of different radii, i.e. 1, 3, and 5mm, have been cut on Nickelvac-HX. …


Development Of A Simevents Model For Printed Circuit Board (Pcb) Assembly Processes, Siqin Dong, Mileta Tomovic, Krishnanand Kaipa Jan 2023

Development Of A Simevents Model For Printed Circuit Board (Pcb) Assembly Processes, Siqin Dong, Mileta Tomovic, Krishnanand Kaipa

Engineering Technology Faculty Publications

Printed circuit boards (PCBs) are the foundational building blocks of most modern electronic devices. PCB assembly is defined as the process of mounting different electronic components on a PCB. Circuit board assembly utilizes an automated technique with most steps completed by machines for different operations (e.g., pick-and-place components, soldering, etc.). In this paper, details of a student course project, carried out at Old Dominion University, on the design and simulation of PCB assembly processes based on MATLAB discrete-event system are presented. An essential component in the advanced manufacturing technology course is the hands-on experience where students implement multiple software simulation …


Design Of Versatile Feedback Control System Components For Selective Laser Sintering, Thomas Chessman May 2020

Design Of Versatile Feedback Control System Components For Selective Laser Sintering, Thomas Chessman

University Scholar Projects

Selective laser sintering (SLS) is an additive manufacturing technique that involves using a laser to fuse powdered material together, layer by layer, in order to create a 3-D product. Despite its numerous benefits over traditional methods of manufacturing, including higher efficiency, versatility, and the ability to process many materials, selective laser sintering suffers from its propensity to generate structural errors during operation.

Feedback control has been shown to improve fabrication quality in other laser-based additive manufacturing techniques when implemented properly. Widespread exploration of applying feedback control in SLS might lead to significant performance improvements in this form of manufacturing.

This …


A Systematic Study On The Effects Of Dimensional And Materials Tolerances On Permanent Magnet Synchronous Machines Based On The Ieee Std 1812, Narges Taran, Vandana Rallabandi, Dan M. Ionel, Ping Zhou, Mark Theile, Greg Heins Mar 2019

A Systematic Study On The Effects Of Dimensional And Materials Tolerances On Permanent Magnet Synchronous Machines Based On The Ieee Std 1812, Narges Taran, Vandana Rallabandi, Dan M. Ionel, Ping Zhou, Mark Theile, Greg Heins

Power and Energy Institute of Kentucky Faculty Publications

In the process of designing and manufacturing an electrical machine, a systematic study of dimensional and material tolerances is of the utmost importance. This paper proposes a systematic method by which the effect of design specification variations on permanent magnet (PM) synchronous machine performance may be identified and quantified. The method combines design of experiments techniques, open-circuit and short-circuit physical measurements, and virtual test simulations conducted based on the recently approved IEEE Std 1812 testing guide. Three case studies, two provided by a spoke-type PM radial field machine configuration, in two designs with different electromagnetic loading, and an axial flux …


Method Of Manufacturing A Semiconductor Heteroepitaxy Structure, Zhi David Chen May 2017

Method Of Manufacturing A Semiconductor Heteroepitaxy Structure, Zhi David Chen

Electrical and Computer Engineering Faculty Patents

A method of manufacturing a semiconductor structure includes the steps of depositing a layer of semiconductor oxide on a base semiconductor layer, scavenging oxygen from the layer of semiconductor oxide and recrystallizing the oxygen scavenged layer of semiconductor oxide as a semiconductor heteroepitaxy layer.


Technical And Economic Assessment Of Perovskite Solar Cells For Large Scale Manufacturing, Amir A. Asif, Rajendra Singh, Githin F. Alapatt Jul 2015

Technical And Economic Assessment Of Perovskite Solar Cells For Large Scale Manufacturing, Amir A. Asif, Rajendra Singh, Githin F. Alapatt

Publications

In this paper, we have carried out detailed technical and economic assessment of perovskite solar cells for large scale manufacturing. For ultra-small area of the order of 0.1 cm2, efficiency of 20% or so are reported. However, for area of 25 cm2, the efficiency is about 10%. Based on the photovoltaic module manufacturing requirements of no constraint on the supply of raw materials, low variability of every key process and process-induced defects, low cost of manufacturing, prospects for further cost reduction in the future, green manufacturing, and long-term reliability, there are absolutely no prospects of manufacturing …


Increased Performance Of Battery Packs By Active Equalization, Jonathan W. Kimball, Brian T. Kuhn, Philip T. Krein Sep 2007

Increased Performance Of Battery Packs By Active Equalization, Jonathan W. Kimball, Brian T. Kuhn, Philip T. Krein

Electrical and Computer Engineering Faculty Research & Creative Works

Battery packs for most applications are series strings of electrochemical cells. Due to manufacturing variations, temperature differences, and aging, the individual cells perform differently. When a complete pack is charged and discharged as a single two-terminal circuit element, some cells are chronically overcharged, undercharged, or overdischarged, all of which act to reduce cell life. The performance and life of the complete pack is limited by the weakest cell. Many methods have been proposed and explored to mitigate this problem. In the present work, a switched-capacitor converter is shown to be a simple and effective method to maintain equal cell or …


On Innovative Methods Of Induction Motor Interturn And Broken-Bar Fault Diagnostics, Behrooz Mirafzal, Nabeel Demerdash Mar 2006

On Innovative Methods Of Induction Motor Interturn And Broken-Bar Fault Diagnostics, Behrooz Mirafzal, Nabeel Demerdash

Electrical and Computer Engineering Faculty Research and Publications

A fault indicator, the so-called swing angle, for broken-bar and interturn faults is investigated in this paper. This fault indicator is based on the rotating magnetic-field pendulous-oscillation concept in faulty squirrel-cage induction motors. Using the "swing-angle indicator," it will be demonstrated here that an interturn fault can be detected even in the presence of machine manufacturing imperfections. Meanwhile, a broken-bar fault can be detected under both direct-line and PWM excitations, even under the more difficult condition of partial-load levels. These two conditions of partial load and motor manufacturing imperfections, which are considered as difficult situations for fault detection, are investigated …


Uml Extensions For Real-Time Control Systems, Qimin Gao, Lyndon Brown, Luiz Fernando Capretz Dec 2003

Uml Extensions For Real-Time Control Systems, Qimin Gao, Lyndon Brown, Luiz Fernando Capretz

Electrical and Computer Engineering Publications

The use of object oriented techniques and methodologies for the design of real-time control systems appears to be necessary in order to deal with the increasing complexity of such systems. Recently many object-oriented methods have been used for the modeling and design of real-time control systems. We believe that an approach that integrates the advancements in both object modeling and design methods, and real-time scheduling theory is the key to successful use of object oriented technology for real-time software. Surprisingly several past approaches to integrate the two either restrict the object models, or do not allow sophisticated schedulability analysis techniques. …