Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Design, Modeling, And Testing Of A Novel Inductor For Electric Vehicles: Iron Nitride Soft Magnetic Composites, Sydney F. Fultz-Waters, Jacob Krynock Jun 2023

Design, Modeling, And Testing Of A Novel Inductor For Electric Vehicles: Iron Nitride Soft Magnetic Composites, Sydney F. Fultz-Waters, Jacob Krynock

Materials Engineering

New technology for electric vehicles (EVs) must meet the requirements of higher energy usage, lower costs, and more sustainable source materials. One promising material for EV power system components is iron nitride (IN) soft magnetic composites (SMCs) because of their competitive magnetic properties and high abundance of the source materials. As part of an ongoing program at Sandia National Laboratories, this project focused on using computer modeling to optimize the prototyping process for an iron nitride SMC toroidal inductor to reach a target inductance of 600 μH. Four inductors with different combinations of wiring (26 AWG and 20 AWG) and …


Inkjet Printing Of Nano-Silver Conductive Ink On Pet Substrate, Skyler Jiang Jun 2017

Inkjet Printing Of Nano-Silver Conductive Ink On Pet Substrate, Skyler Jiang

Materials Engineering

Printing of conductive ink traditionally uses copper-based ink and was used on high temperature metal substrates due to the high curing and sintering temperature of copper. In this experiment, however, Metalon JS-B25P nano-silver conductive ink was printed using an Epson Stylus C88+ inkjet printer on polyethylene terephthalate (PET) based Novele printing media made for low temperature applications. With silver’s lower sintering temperature, the nano-silver particles in this ink are desired to be able to sinter at a low enough temperature to be used on the PET substrate. The printed ink traces were cured with a temperature-controlled hotplate at 100℃, 120℃, …


Screen Printing Silver Stretchable Conductive Paste To High Density Synthetic Fabric, Allison Rose Tuuri, Wesley Graham Powell Jun 2017

Screen Printing Silver Stretchable Conductive Paste To High Density Synthetic Fabric, Allison Rose Tuuri, Wesley Graham Powell

Materials Engineering

This project investigated the viability of screen printing stretchable silver conductive paste directly onto fabric and how the resistance changed under cyclic mechanical loading. The paste tested was DuPont™ PE873 stretchable silver conductive paste, which forms a stretchable conductive path by suspending silver flakes in elastomer that can be elastically strained along with the underlying substrate. The silver pastes were printed directly onto two different high-density synthetic fabrics of different weaves. Other samples were prepared by first printing a base layer between the silver paste and the fabric. One base layer was a solvent-based dielectric (DuPont™ ME776) and a stretchable …


Manufacturing And Characterization Of Poly (Lactic Acid)/Carbon Black Conductive Composites For Fdm Feedstock: An Exploratory Study, Dylan Fitz-Gerald, Justin Boothe Jun 2016

Manufacturing And Characterization Of Poly (Lactic Acid)/Carbon Black Conductive Composites For Fdm Feedstock: An Exploratory Study, Dylan Fitz-Gerald, Justin Boothe

Materials Engineering

This exploratory study developed methods of manufacturing and characterizing the electrical properties of small batches of conductive composite feedstock for the Fused Deposition Modeling (FDM) manufacturing process, commonly known as 3D printing. We utilized a solution casting process of Poly(lactic acid) (PLA) (Grade 4043D, NatureWorks, LLC.) and Carbon Black (CB) (Vulcan® XC72, Cabot Corp.) in chloroform. The resulting composite precursor was cryogenically treated with liquid nitrogen and milled in a coffee grinder in order to achieve particles that could be fed into the extruder. Composite precursors were dried in a vacuum oven at an elevated temperature of 38°C. Filaments were …


Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook Jun 2015

Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook

Materials Engineering

The top contact electrode layers of nine organic photovoltaic cells were prepared with two varying factors: three Silver nanowire (AgNW) densities deposited on a conductive polymer doped with three concentrations. Silver’s low sheet resistance of 20-Ω/sq is hypothesized to lower the sheet resistance of the anode layer and thus enhance the overall efficiency of the cell. Four-point probe measurements indicated that increasing AgNW density in the top contact electrode layer of an organic photovoltaic cell significantly reduces sheet resistance from 52.2k-Ω/sq to 18.0 Ω/sq. Although an increase in doping concentration of the conductive polymer reduced sheet resistance in low AgNW …


Lunalight - Bringing Light To The Expanding World, Gabriela M. Igel, Daniel J. Patrick, Kimberley M. Smith Jun 2013

Lunalight - Bringing Light To The Expanding World, Gabriela M. Igel, Daniel J. Patrick, Kimberley M. Smith

Materials Engineering

The LunaLight, a solar rechargeable light and cell phone charger, addresses the lack of access to electricity faced by 1.4 billion of the world’s population (International Finance Corporation). The LunaTech team has developed a product that is bright, simple, compact, versatile and competitive with existing products. Through a partnership with the non-profit organization One Million Lights, LunaTech has improved a previous team’s design to address user feedback, concerns of durability, and manufacturability.

The LunaLight design includes a 5 component plastic housing held together by 4 screws, a surface mounted PCB, a lithium-ion (Li-Ion) battery, one high-brightness LED, a solar panel, …


Final Design Review: Design Of An Integrated Solar Cell Array To Power A Solar Ear Hearing Aid Battery Recharger, Christina (Chrissa) Blattner, Scott Carey, Jared Myren, Faye Siao Jun 2011

Final Design Review: Design Of An Integrated Solar Cell Array To Power A Solar Ear Hearing Aid Battery Recharger, Christina (Chrissa) Blattner, Scott Carey, Jared Myren, Faye Siao

Materials Engineering

As the energy of fossil fuel supplies are fast depleting due to high consumptions of energy by human beings, the need for other sources of energy, such as solar energy, has become a viable option. By creating solar cell arrays the desired voltage can be generated. The overall goal of the Solar Ear project is to create an array of photovoltaic cells connected with aluminum tracings to recharge batteries that are specifically used for hearing aids. The goal embodies two main areas: the design of a processing method to connect the cells during a micro-fabrication process and the creation of …