Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Lifelong Learning-Based Multilayer Neural Network Control Of Nonlinear Continuous-Time Strict-Feedback Systems, Irfan Ahmad Ganie, S. (Sarangapani) Jagannathan Jan 2023

Lifelong Learning-Based Multilayer Neural Network Control Of Nonlinear Continuous-Time Strict-Feedback Systems, Irfan Ahmad Ganie, S. (Sarangapani) Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

In This Paper, We Investigate Lifelong Learning (LL)-Based Tracking Control for Partially Uncertain Strict Feedback Nonlinear Systems with State Constraints, employing a Singular Value Decomposition (SVD) of the Multilayer Neural Networks (MNNs) Activation Function based Weight Tuning Scheme. the Novel SVD-Based Approach Extends the MNN Weight Tuning to (Formula Presented.) Layers. a Unique Online LL Method, based on Tracking Error, is Integrated into the MNN Weight Update Laws to Counteract Catastrophic Forgetting. to Adeptly Address Constraints for Safety Assurances, Taking into Account the Effects Caused by Disturbances, We Utilize a Time-Varying Barrier Lyapunov Function (TBLF) that Ensures a Uniformly Ultimately …


Lyapunov-Based Economic Model Predictive Control For Detecting And Handling Actuator And Simultaneous Sensor/Actuator Cyberattacks On Process Control Systems, Henrique Oyama, Dominic Messina, Keshav Kasturi Rangan, Helen Durand Apr 2022

Lyapunov-Based Economic Model Predictive Control For Detecting And Handling Actuator And Simultaneous Sensor/Actuator Cyberattacks On Process Control Systems, Henrique Oyama, Dominic Messina, Keshav Kasturi Rangan, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

The controllers for a cyber-physical system may be impacted by sensor measurement cyberattacks, actuator signal cyberattacks, or both types of attacks. Prior work in our group has developed a theory for handling cyberattacks on process sensors. However, sensor and actuator cyberattacks have a different character from one another. Specifically, sensor measurement attacks prevent proper inputs from being applied to the process by manipulating the measurements that the controller receives, so that the control law plays a role in the impact of a given sensor measurement cyberattack on a process. In contrast, actuator signal attacks prevent proper inputs from being applied …


Continuity Of Chen-Fliess Series For Applications In System Identification And Machine Learning, Rafael Dahmen, W. Steven Gray, Alexander Schmeding Jan 2021

Continuity Of Chen-Fliess Series For Applications In System Identification And Machine Learning, Rafael Dahmen, W. Steven Gray, Alexander Schmeding

Electrical & Computer Engineering Faculty Publications

Model continuity plays an important role in applications like system identification, adaptive control, and machine learning. This paper provides sufficient conditions under which input-output systems represented by locally convergent Chen-Fliess series are jointly continuous with respect to their generating series and as operators mapping a ball in an Lp-space to a ball in an Lq-space, where p and q are conjugate exponents. The starting point is to introduce a class of topological vector spaces known as Silva spaces to frame the problem and then to employ the concept of a direct limit to describe convergence. The proof of the main …


Integrated Cyberattack Detection And Resilient Control Strategies Using Lyapunov-Based Economic Model Predictive Control, Henrique Oyama, Helen Durand Oct 2020

Integrated Cyberattack Detection And Resilient Control Strategies Using Lyapunov-Based Economic Model Predictive Control, Henrique Oyama, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

The use of an integrated system framework, characterized by numerous cyber/physical components (sensor measurements, signals to actuators) connected through wired/wireless networks, has not only increased the ability to control industrial systems, but also the vulnerabilities to cyberattacks. State measurement cyberattacks could pose threats to process control systems since feedback control may be lost if the attack policy is not thwarted. Motivated by this, we propose three detection concepts based on Lyapunov‐based economic model predictive control (LEMPC) for nonlinear systems. The first approach utilizes randomized modifications to an LEMPC formulation online to potentially detect cyberattacks. The second method detects attacks when …


Computational Analysis Of Antipode Algorithms For The Output Feedback Hopf Algebra, Lance Berlin Oct 2019

Computational Analysis Of Antipode Algorithms For The Output Feedback Hopf Algebra, Lance Berlin

Electrical & Computer Engineering Theses & Dissertations

The feedback interconnection of two systems written in terms of Chen-Fliess series can be described explicitly in terms of the antipode of the output feedback Hopf algebra. At present, there are three known computational approaches to calculating this antipode: the left coproduct method, the right coproduct method, and the derivation method. Each of these algorithms is defined recursively, and thus becomes computationally expensive quite quickly. This motivates the need for a more complete understanding of the algorithmic complexity of these methods, as well as the development of new approaches for determining the Hopf algebra antipode. The main goals of this …


Dynamic Output Feedback Invariants Of Full Relative Degree Nonlinear Siso Systems, W. Steven Gray, Luis A. Duffaut Espinosa Jan 2018

Dynamic Output Feedback Invariants Of Full Relative Degree Nonlinear Siso Systems, W. Steven Gray, Luis A. Duffaut Espinosa

Electrical & Computer Engineering Faculty Publications

The goal of this paper is to explicitly describe invariants of a plant described by a Chen--Fliess series under a class of dynamic output feedback laws using earlier work by the authors on feedback transformation groups. The main result requires the rather strong assumption that the plant has a generating series with both finite Lie rank and full relative degree. In which case, there is no loss of generality in working with state space realizations of the plant. An additional genericness assumption regarding the normal form of the plant is also required, but as shown by the examples, this condition …


Addressing Computational Complexity Of High Speed Distributed Circuits Using Model Order Reduction, Ehsan Rasekh Sep 2011

Addressing Computational Complexity Of High Speed Distributed Circuits Using Model Order Reduction, Ehsan Rasekh

Electronic Thesis and Dissertation Repository

Advanced in the fabrication technology of integrated circuits (ICs) over the last couple of years has resulted in an unparalleled expansion of the functionality of microelectronic systems. Today’s ICs feature complex deep-submicron mixed-signal designs and have found numerous applications in industry due to their lower manufacturing costs and higher performance levels. The tendency towards smaller feature sizes and increasing clock rates is placing higher demands on signal integrity design by highlighting previously negligible interconnect effects such as distortion, reflection, ringing, delay, and crosstalk. These effects if not predicted in the early stages of the design cycle can severely degrade circuit …


Building Linear Parameter Varying Models Using Adaptation, For The Control Of A Class Of Nonlinear Systems, Coşku Kasnakoğlu Jan 2010

Building Linear Parameter Varying Models Using Adaptation, For The Control Of A Class Of Nonlinear Systems, Coşku Kasnakoğlu

Turkish Journal of Electrical Engineering and Computer Sciences

In this paper a novel method is proposed for constructing linear parameter varying (LPV) system models through adaptation. For a class of nonlinear systems, an LPV model is built using its linear part, and its coefficients are considered as time-varying parameters. The variation in time is controlled by an adaptation scheme with the goal of keeping the trajectories of the LPV system close to those of the original nonlinear system. Using the LPV model as a surrogate, a dynamical controller is built by utilizing self-scheduling methods for LPV systems, and it is shown that this controller will indeed stabilize the …


A Model Based Nonlinear Adaptive Controller For The Passive Bilateral Telerobotic System, Ufuk Özbay, Erkan Zergeroğlu, İlyas Kandemi̇r Jan 2010

A Model Based Nonlinear Adaptive Controller For The Passive Bilateral Telerobotic System, Ufuk Özbay, Erkan Zergeroğlu, İlyas Kandemi̇r

Turkish Journal of Electrical Engineering and Computer Sciences

IIn this paper, we propose a new adaptive controller scheme for the bilateral telerobotic/teleoperation systems. The proposed controller achieves asymptotic tracking despite the parametric uncertainties associated with both master and slave robots while ensuring the passivity of the closed loop system. Extensive simulation studies are presented to illustrate the feasibility and efficiency of the proposed adaptive controller.


The Formal Laplace-Borel Transform Of Fliess Operators And The Composition Product, Yaqin Li, W. Steven Gray Jan 2006

The Formal Laplace-Borel Transform Of Fliess Operators And The Composition Product, Yaqin Li, W. Steven Gray

Electrical & Computer Engineering Faculty Publications

The formal Laplace-Borel transform of an analytic integral operator, known as a Fliess operator, is defined and developed. Then, in conjunction with the composition product over formal power series, the formal Laplace-Borel transform is shown to provide an isomorphism between the semigroup of all Fliess operators under operator composition and the semigroup of all locally convergent formal power series under the composition product. Finally, the formal Laplace-Borel transform is applied in a systems theory setting to explicitly derive the relationship between the formal Laplace transform of the input and output functions of a Fliess operator. This gives a compact interpretation …


Feedback Linearization Based Power System Stabilizer Design With Control Limits, Wenxin Liu, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Jagannathan Sarangapani Aug 2004

Feedback Linearization Based Power System Stabilizer Design With Control Limits, Wenxin Liu, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In power system controls, simplified analytical models are used to represent the dynamics of power system and controller designs are not rigorous with no stability analysis. One reason is because the power systems are complex nonlinear systems which pose difficulty for analysis. This paper presents a feedback linearization based power system stabilizer design for a single machine infinite bus power system. Since practical operating conditions require the magnitude of control signal to be within certain limits, the stability of the control system under control limits is also analyzed. Simulation results under different kinds of operating conditions show that the controller …