Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Machine learning

Institution
Publication Year
Publication
Publication Type

Articles 31 - 60 of 273

Full-Text Articles in Engineering

Gpu Utilization: Predictive Sarimax Time Series Analysis, Dorothy Dorie Parry Apr 2023

Gpu Utilization: Predictive Sarimax Time Series Analysis, Dorothy Dorie Parry

Modeling, Simulation and Visualization Student Capstone Conference

This work explores collecting performance metrics and leveraging the output for prediction on a memory-intensive parallel image classification algorithm - Inception v3 (or "Inception3"). Experimental results were collected by nvidia-smi on a computational node DGX-1, equipped with eight Tesla V100 Graphic Processing Units (GPUs). Time series analysis was performed on the GPU utilization data taken, for multiple runs, of Inception3’s image classification algorithm (see Figure 1). The time series model applied was Seasonal Autoregressive Integrated Moving Average Exogenous (SARIMAX).


Lidar Buoy Detection For Autonomous Marine Vessel Using Pointnet Classification, Christopher Adolphi, Dorothy Dorie Parry, Yaohang Li, Masha Sosonkina, Ahmet Saglam, Yiannis E. Papelis Apr 2023

Lidar Buoy Detection For Autonomous Marine Vessel Using Pointnet Classification, Christopher Adolphi, Dorothy Dorie Parry, Yaohang Li, Masha Sosonkina, Ahmet Saglam, Yiannis E. Papelis

Modeling, Simulation and Visualization Student Capstone Conference

Maritime autonomy, specifically the use of autonomous and semi-autonomous maritime vessels, is a key enabling technology supporting a set of diverse and critical research areas, including coastal and environmental resilience, assessment of waterway health, ecosystem/asset monitoring and maritime port security. Critical to the safe, efficient and reliable operation of an autonomous maritime vessel is its ability to perceive on-the-fly the external environment through onboard sensors. In this paper, buoy detection for LiDAR images is explored by using several tools and techniques: machine learning methods, Unity Game Engine (herein referred to as Unity) simulation, and traditional image processing. The Unity Game …


Defining Safe Training Datasets For Machine Learning Models Using Ontologies, Lynn C. Vonder Haar Apr 2023

Defining Safe Training Datasets For Machine Learning Models Using Ontologies, Lynn C. Vonder Haar

Doctoral Dissertations and Master's Theses

Machine Learning (ML) models have been gaining popularity in recent years in a wide variety of domains, including safety-critical domains. While ML models have shown high accuracy in their predictions, they are still considered black boxes, meaning that developers and users do not know how the models make their decisions. While this is simply a nuisance in some domains, in safetycritical domains, this makes ML models difficult to trust. To fully utilize ML models in safetycritical domains, there needs to be a method to improve trust in their safety and accuracy without human experts checking each decision. This research proposes …


Design, Determination, And Evaluation Of Gender-Based Bias Mitigation Techniques For Music Recommender Systems, Sunny Shrestha Mar 2023

Design, Determination, And Evaluation Of Gender-Based Bias Mitigation Techniques For Music Recommender Systems, Sunny Shrestha

Electronic Theses and Dissertations

The majority of smartphone users engage with a recommender system on a daily basis. Many rely on these recommendations to make their next purchase, download the next game, listen to the new music or find the next healthcare provider. Although there are plenty of evidence backed research that demonstrates presence of gender bias in Machine Learning (ML) models like recommender systems, the issue is viewed as a frivolous cause that doesn’t merit much action. However, gender bias poses to effect more than half of the population as by default ML systems are designed to cater to a cisgender man. This …


Towards Machine Learning-Based Fpga Backend Flow: Challenges And Opportunities, Imran Taj, Umer Farooq Feb 2023

Towards Machine Learning-Based Fpga Backend Flow: Challenges And Opportunities, Imran Taj, Umer Farooq

All Works

Field-Programmable Gate Array (FPGA) is at the core of System on Chip (SoC) design across various Industry 5.0 digital systems—healthcare devices, farming equipment, autonomous vehicles and aerospace gear to name a few. Given that pre-silicon verification using Computer Aided Design (CAD) accounts for about 70% of the time and money spent on the design of modern digital systems, this paper summarizes the machine learning (ML)-oriented efforts in different FPGA CAD design steps. With the recent breakthrough of machine learning, FPGA CAD tasks—high-level synthesis (HLS), logic synthesis, placement and routing—are seeing a renewed interest in their respective decision-making steps. We focus …


A Bidirectional Deep Lstm Machine Learning Method For Flight Delay Modelling And Analysis, Desmond B. Bisandu, Irene Moulitsas Jan 2023

A Bidirectional Deep Lstm Machine Learning Method For Flight Delay Modelling And Analysis, Desmond B. Bisandu, Irene Moulitsas

National Training Aircraft Symposium (NTAS)

Flight delays can be prevented by providing a reference point from an accurate prediction model because predicting flight delays is a problem with a specific space. Only a few algorithms consider predicted classes' mutual correlation during flight delay classification or prediction modelling tasks. None of these existing methods works for all scenarios. Therefore, the need to investigate the performance of more models in solving the problem of flight delay is vast and rapidly increasing. This paper presents the development and evaluation of LSTM and BiLSTM models by comparing them for a flight delay prediction. The LSTM does the feature extraction …


Data Augmentation For Neutron Spectrum Unfolding With Neural Networks, James Mcgreivy, Juan J. Manfredi, Daniel Siefman Jan 2023

Data Augmentation For Neutron Spectrum Unfolding With Neural Networks, James Mcgreivy, Juan J. Manfredi, Daniel Siefman

Faculty Publications

Neural networks require a large quantity of training spectra and detector responses in order to learn to solve the inverse problem of neutron spectrum unfolding. In addition, due to the under-determined nature of unfolding, non-physical spectra which would not be encountered in usage should not be included in the training set. While physically realistic training spectra are commonly determined experimentally or generated through Monte Carlo simulation, this can become prohibitively expensive when considering the quantity of spectra needed to effectively train an unfolding network. In this paper, we present three algorithms for the generation of large quantities of realistic and …


Artificial Intelligence-Enabled Exploratory Cyber-Physical Safety Analyzer Framework For Civilian Urban Air Mobility, Md. Shirajum Munir, Sumit Howlader Dipro, Kamrul Hasan, Tariqul Islam, Sachin Shetty Jan 2023

Artificial Intelligence-Enabled Exploratory Cyber-Physical Safety Analyzer Framework For Civilian Urban Air Mobility, Md. Shirajum Munir, Sumit Howlader Dipro, Kamrul Hasan, Tariqul Islam, Sachin Shetty

VMASC Publications

Urban air mobility (UAM) has become a potential candidate for civilization for serving smart citizens, such as through delivery, surveillance, and air taxis. However, safety concerns have grown since commercial UAM uses a publicly available communication infrastructure that enhances the risk of jamming and spoofing attacks to steal or crash crafts in UAM. To protect commercial UAM from cyberattacks and theft, this work proposes an artificial intelligence (AI)-enabled exploratory cyber-physical safety analyzer framework. The proposed framework devises supervised learning-based AI schemes such as decision tree, random forests, logistic regression, K-nearest neighbors (KNN), and long short-term memory (LSTM) for predicting and …


Optimizing Constraint Selection In A Design Verification Environment For Efficient Coverage Closure, Vanessa Cooper Jan 2023

Optimizing Constraint Selection In A Design Verification Environment For Efficient Coverage Closure, Vanessa Cooper

CCE Theses and Dissertations

No abstract provided.


Adversarial Training Of Deep Neural Networks, Anabetsy Termini Jan 2023

Adversarial Training Of Deep Neural Networks, Anabetsy Termini

CCE Theses and Dissertations

Deep neural networks used for image classification are highly susceptible to adversarial attacks. The de facto method to increase adversarial robustness is to train neural networks with a mixture of adversarial images and unperturbed images. However, this method leads to robust overfitting, where the network primarily learns to recognize one specific type of attack used to generate the images while remaining vulnerable to others after training. In this dissertation, we performed a rigorous study to understand whether combinations of state of the art data augmentation methods with Stochastic Weight Averaging improve adversarial robustness and diminish adversarial overfitting across a wide …


An Empirical Study Of Pre-Trained Model Reuse In The Hugging Face Deep Learning Model Registry, Wenxin Jiang, Nicholas Synovic, Matt Hyatt, Taylor R. Schorlemmer, Rohan Sethi, Yung-Hsiang Lu, George K. Thiruvathukal, James C. Davis Jan 2023

An Empirical Study Of Pre-Trained Model Reuse In The Hugging Face Deep Learning Model Registry, Wenxin Jiang, Nicholas Synovic, Matt Hyatt, Taylor R. Schorlemmer, Rohan Sethi, Yung-Hsiang Lu, George K. Thiruvathukal, James C. Davis

Department of Electrical and Computer Engineering Faculty Publications

Deep Neural Networks (DNNs) are being adopted as components in software systems. Creating and specializing DNNs from scratch has grown increasingly difficult as state-of-the-art architectures grow more complex. Following the path of traditional software engineering, machine learning engineers have begun to reuse large-scale pre-trained models (PTMs) and fine-tune these models for downstream tasks. Prior works have studied reuse practices for traditional software packages to guide software engineers towards better package maintenance and dependency management. We lack a similar foundation of knowledge to guide behaviors in pre-trained model ecosystems.

In this work, we present the first empirical investigation of PTM reuse. …


Transfer Learning Using Infrared And Optical Full Motion Video Data For Gender Classification, Alexander M. Glandon, Joe Zalameda, Khan M. Iftekharuddin, Gabor F. Fulop (Ed.), David Z. Ting (Ed.), Lucy L. Zheng (Ed.) Jan 2023

Transfer Learning Using Infrared And Optical Full Motion Video Data For Gender Classification, Alexander M. Glandon, Joe Zalameda, Khan M. Iftekharuddin, Gabor F. Fulop (Ed.), David Z. Ting (Ed.), Lucy L. Zheng (Ed.)

Electrical & Computer Engineering Faculty Publications

This work is a review and extension of our ongoing research in human recognition analysis using multimodality motion sensor data. We review our work on hand crafted feature engineering for motion capture skeleton (MoCap) data, from the Air Force Research Lab for human gender followed by depth scan based skeleton extraction using LIDAR data from the Army Night Vision Lab for person identification. We then build on these works to demonstrate a transfer learning sensor fusion approach for using the larger MoCap and smaller LIDAR data for gender classification.


Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette Jan 2023

Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette

Electrical & Computer Engineering Faculty Publications

Real-time fall detection using a wearable sensor remains a challenging problem due to high gait variability. Furthermore, finding the type of sensor to use and the optimal location of the sensors are also essential factors for real-time fall-detection systems. This work presents real-time fall-detection methods using deep learning models. Early detection of falls, followed by pneumatic protection, is one of the most effective means of ensuring the safety of the elderly. First, we developed and compared different data-segmentation techniques for sliding windows. Next, we implemented various techniques to balance the datasets because collecting fall datasets in the real-time setting has …


Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations, John P. Romano, Alec C. Brodeur, Oktay Baysal Jan 2023

Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations, John P. Romano, Alec C. Brodeur, Oktay Baysal

Mechanical & Aerospace Engineering Faculty Publications

This paper expands the authors’ prior work[1], which focuses on developing a convolutional neural network (CNN) model capable of mapping time-averaged, unsteady Reynold’s-averaged Navier-Stokes (URANS) simulations to higher resolution results informed by time-averaged detached eddy simulations (DES). The authors present improvements over the prior CNN autoencoder model that result from hyperparameter optimization, increased data set augmentation through the adoption of a patch-wise training approach, and the predictions of primitive variables rather than vorticity magnitude. The training of the CNN model developed in this study uses the same URANS and DES simulations of a transonic flow around several NACA 4-digit airfoils …


Convolutional-Neural-Network-Based Des-Level Aerodynamic Flow Field Generation From Urans Data, John P. Romano, Oktay Baysal, Alec C. Brodeur Jan 2023

Convolutional-Neural-Network-Based Des-Level Aerodynamic Flow Field Generation From Urans Data, John P. Romano, Oktay Baysal, Alec C. Brodeur

Mechanical & Aerospace Engineering Faculty Publications

The present paper culminates several investigations into the use of convolutional neural networks (CNNs) as a post-processing step to improve the accuracy of unsteady Reynolds-averaged Navier–Stokes (URANS) simulations for subsonic flows over airfoils at low angles of attack. Time-averaged detached eddy simulation (DES)-generated flow fields serve as the target data for creating and training CNN models. CNN post-processing generates flow-field data comparable to DES resolution, but after using only URANS-level resources and properly training CNN models. This document outlines the underlying theory and progress toward the goal of improving URANS simulations by looking at flow predictions for a class of …


Security Of Internet Of Things (Iot) Using Federated Learning And Deep Learning — Recent Advancements, Issues And Prospects, Vinay Gugueoth, Sunitha Safavat, Sachin Shetty Jan 2023

Security Of Internet Of Things (Iot) Using Federated Learning And Deep Learning — Recent Advancements, Issues And Prospects, Vinay Gugueoth, Sunitha Safavat, Sachin Shetty

Electrical & Computer Engineering Faculty Publications

There is a great demand for an efficient security framework which can secure IoT systems from potential adversarial attacks. However, it is challenging to design a suitable security model for IoT considering the dynamic and distributed nature of IoT. This motivates the researchers to focus more on investigating the role of machine learning (ML) in the designing of security models. A brief analysis of different ML algorithms for IoT security is discussed along with the advantages and limitations of ML algorithms. Existing studies state that ML algorithms suffer from the problem of high computational overhead and risk of privacy leakage. …


Deep-Learning-Based Classification Of Digitally Modulated Signals Using Capsule Networks And Cyclic Cumulants, John A. Snoap, Dimitrie C. Popescu, James A. Latshaw, Chad M. Spooner Jan 2023

Deep-Learning-Based Classification Of Digitally Modulated Signals Using Capsule Networks And Cyclic Cumulants, John A. Snoap, Dimitrie C. Popescu, James A. Latshaw, Chad M. Spooner

Electrical & Computer Engineering Faculty Publications

This paper presents a novel deep-learning (DL)-based approach for classifying digitally modulated signals, which involves the use of capsule networks (CAPs) together with the cyclic cumulant (CC) features of the signals. These were blindly estimated using cyclostationary signal processing (CSP) and were then input into the CAP for training and classification. The classification performance and the generalization abilities of the proposed approach were tested using two distinct datasets that contained the same types of digitally modulated signals, but had distinct generation parameters. The results showed that the classification of digitally modulated signals using CAPs and CCs proposed in the paper …


An Optimized And Scalable Blockchain-Based Distributed Learning Platform For Consumer Iot, Zhaocheng Wang, Xueying Liu, Xinming Shao, Abdullah Alghamdi, Md. Shirajum Munir, Sujit Biswas Jan 2023

An Optimized And Scalable Blockchain-Based Distributed Learning Platform For Consumer Iot, Zhaocheng Wang, Xueying Liu, Xinming Shao, Abdullah Alghamdi, Md. Shirajum Munir, Sujit Biswas

School of Cybersecurity Faculty Publications

Consumer Internet of Things (CIoT) manufacturers seek customer feedback to enhance their products and services, creating a smart ecosystem, like a smart home. Due to security and privacy concerns, blockchain-based federated learning (BCFL) ecosystems can let CIoT manufacturers update their machine learning (ML) models using end-user data. Federated learning (FL) uses privacy-preserving ML techniques to forecast customers' needs and consumption habits, and blockchain replaces the centralized aggregator to safeguard the ecosystem. However, blockchain technology (BCT) struggles with scalability and quick ledger expansion. In BCFL, local model generation and secure aggregation are other issues. This research introduces a novel architecture, emphasizing …


A Survey Of Using Machine Learning In Iot Security And The Challenges Faced By Researchers, Khawlah M. Harahsheh, Chung-Hao Chen Jan 2023

A Survey Of Using Machine Learning In Iot Security And The Challenges Faced By Researchers, Khawlah M. Harahsheh, Chung-Hao Chen

Electrical & Computer Engineering Faculty Publications

The Internet of Things (IoT) has become more popular in the last 15 years as it has significantly improved and gained control in multiple fields. We are nowadays surrounded by billions of IoT devices that directly integrate with our lives, some of them are at the center of our homes, and others control sensitive data such as military fields, healthcare, and datacenters, among others. This popularity makes factories and companies compete to produce and develop many types of those devices without caring about how secure they are. On the other hand, IoT is considered a good insecure environment for cyber …


Early Diagnosis Of Pancreatic Cancer By Machine Learning Methods Using Urine Biomarker Combinations, İrem Acer, Firat Orhan Bulucu, Semra İçer, Fatma Lati̇foğlu Jan 2023

Early Diagnosis Of Pancreatic Cancer By Machine Learning Methods Using Urine Biomarker Combinations, İrem Acer, Firat Orhan Bulucu, Semra İçer, Fatma Lati̇foğlu

Turkish Journal of Electrical Engineering and Computer Sciences

The most common type of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC), which accounts for the vast majority of pancreatic cancers. The five-year survival rate for PDAC due to late diagnosis is 9%. Early diagnosed PDAC patients survive longer than patients diagnosed at a more advanced stage. Biomarkers can play an essential role in the early detection of PDAC to assist the health professional. Machine learning and deep learning methods are used with biomarkers obtained in recent studies for diagnostic purposes. In order to increase the survival rates of PDAC patients, early diagnosis of the disease with a noninvasive test …


A Survey And Evaluation Of Android-Based Malware Evasion Techniques And Detection Frameworks, Parvez Faruki, Rhati Bhan, Vinesh Jain, Sajal Bhatia, Nour El Madhoun, Rajendra Pamula Jan 2023

A Survey And Evaluation Of Android-Based Malware Evasion Techniques And Detection Frameworks, Parvez Faruki, Rhati Bhan, Vinesh Jain, Sajal Bhatia, Nour El Madhoun, Rajendra Pamula

School of Computer Science & Engineering Faculty Publications

Android platform security is an active area of research where malware detection techniques continuously evolve to identify novel malware and improve the timely and accurate detection of existing malware. Adversaries are constantly in charge of employing innovative techniques to avoid or prolong malware detection effectively. Past studies have shown that malware detection systems are susceptible to evasion attacks where adversaries can successfully bypass the existing security defenses and deliver the malware to the target system without being detected. The evolution of escape-resistant systems is an open research problem. This paper presents a detailed taxonomy and evaluation of Android-based malware evasion …


Machine Learning Strategies For Potential Development In High-Entropy Driven Nickel-Based Superalloys, Marium Mostafiz Mou Jan 2023

Machine Learning Strategies For Potential Development In High-Entropy Driven Nickel-Based Superalloys, Marium Mostafiz Mou

MSU Graduate Theses

In this study, I developed Deep Learning interatomic potentials to model a multi-phase and multi-component system of Ni-based Superalloys. The system has up to three major phase constituents, namely Gamma, Gamma Prime, and Transition-metal rich Carbide. I utilized invariant scalar-based and/or equivariant, tensor-based neural network (NN) approach as implemented in DEEPMD, NEQUIP/ALLEGRO codes, respectively, and Moment Tensor Potential (MTP). For the training and validation sets, I employed the ab-initio molecular dynamics (AIMD) trajectory results and ground state DFT calculations, including the energy, force, and virial database from highly diverse compositions, temperatures, and pressures following a “High Entropy Strategy.” The Deep …


A Deep Bilstm Machine Learning Method For Flight Delay Prediction Classification, Desmond B. Bisandu Phd, Irene Moulitsas Phd Jan 2023

A Deep Bilstm Machine Learning Method For Flight Delay Prediction Classification, Desmond B. Bisandu Phd, Irene Moulitsas Phd

Journal of Aviation/Aerospace Education & Research

This paper proposes a classification approach for flight delays using Bidirectional Long Short-Term Memory (BiLSTM) and Long Short-Term Memory (LSTM) models. Flight delays are a major issue in the airline industry, causing inconvenience to passengers and financial losses to airlines. The BiLSTM and LSTM models, powerful deep learning techniques, have shown promising results in a classification task. In this study, we collected a dataset from the United States (US) Bureau of Transportation Statistics (BTS) of flight on-time performance information and used it to train and test the BiLSTM and LSTM models. We set three criteria for selecting highly important features …


Opioid Use Disorder Prediction Using Machine Learning Of Fmri Data, A. Temtam, Liangsuo Ma, F. Gerard Moeller, M. S. Sadique, K. M. Iftekharuddin, Khan M. Iftekharuddin (Ed.), Weijie Chen (Ed.) Jan 2023

Opioid Use Disorder Prediction Using Machine Learning Of Fmri Data, A. Temtam, Liangsuo Ma, F. Gerard Moeller, M. S. Sadique, K. M. Iftekharuddin, Khan M. Iftekharuddin (Ed.), Weijie Chen (Ed.)

Electrical & Computer Engineering Faculty Publications

According to the Centers for Disease Control and Prevention (CDC) more than 932,000 people in the US have died since 1999 from a drug overdose. Just about 75% of drug overdose deaths in 2020 involved Opioid, which suggests that the US is in an Opioid overdose epidemic. Identifying individuals likely to develop Opioid use disorder (OUD) can help public health in planning effective prevention, intervention, drug overdose and recovery policies. Further, a better understanding of prediction of overdose leading to the neurobiology of OUD may lead to new therapeutics. In recent years, very limited work has been done using statistical …


A Survey On Artificial Intelligence-Based Acoustic Source Identification, Ruba Zaheer, Iftekhar Ahmad, Daryoush Habibi, Kazi Y. Islam, Quoc Viet Phung Jan 2023

A Survey On Artificial Intelligence-Based Acoustic Source Identification, Ruba Zaheer, Iftekhar Ahmad, Daryoush Habibi, Kazi Y. Islam, Quoc Viet Phung

Research outputs 2022 to 2026

The concept of Acoustic Source Identification (ASI), which refers to the process of identifying noise sources has attracted increasing attention in recent years. The ASI technology can be used for surveillance, monitoring, and maintenance applications in a wide range of sectors, such as defence, manufacturing, healthcare, and agriculture. Acoustic signature analysis and pattern recognition remain the core technologies for noise source identification. Manual identification of acoustic signatures, however, has become increasingly challenging as dataset sizes grow. As a result, the use of Artificial Intelligence (AI) techniques for identifying noise sources has become increasingly relevant and useful. In this paper, we …


Application Of Big Data Technology, Text Classification, And Azure Machine Learning For Financial Risk Management Using Data Science Methodology, Oluwaseyi A. Ijogun Jan 2023

Application Of Big Data Technology, Text Classification, And Azure Machine Learning For Financial Risk Management Using Data Science Methodology, Oluwaseyi A. Ijogun

Electronic Theses and Dissertations

Data science plays a crucial role in enabling organizations to optimize data-driven opportunities within financial risk management. It involves identifying, assessing, and mitigating risks, ultimately safeguarding investments, reducing uncertainty, ensuring regulatory compliance, enhancing decision-making, and fostering long-term sustainability. This thesis explores three facets of Data Science projects: enhancing customer understanding, fraud prevention, and predictive analysis, with the goal of improving existing tools and enabling more informed decision-making. The first project examined leveraged big data technologies, such as Hadoop and Spark, to enhance financial risk management by accurately predicting loan defaulters and their repayment likelihood. In the second project, we investigated …


Cyber Resilience Analytics For Cyber-Physical Systems, Md Ariful Haque Dec 2022

Cyber Resilience Analytics For Cyber-Physical Systems, Md Ariful Haque

Electrical & Computer Engineering Theses & Dissertations

Cyber-physical systems (CPSs) are complex systems that evolve from the integrations of components dealing with physical processes and real-time computations, along with networking. CPSs often incorporate approaches merging from different scientific fields such as embedded systems, control systems, operational technology, information technology systems (ITS), and cybernetics. Today critical infrastructures (CIs) (e.g., energy systems, electric grids, etc.) and other CPSs (e.g., manufacturing industries, autonomous transportation systems, etc.) are experiencing challenges in dealing with cyberattacks. Major cybersecurity concerns are rising around CPSs because of their ever-growing use of information technology based automation. Often the security concerns are limited to probability-based possible attack …


Design Of Secure Communication Schemes To Provide Authentication And Integrity Among The Iot Devices, Vidya Rao Dr. Nov 2022

Design Of Secure Communication Schemes To Provide Authentication And Integrity Among The Iot Devices, Vidya Rao Dr.

Technical Collection

The fast growth in Internet-of-Things (IoT) based applications, has increased the number of end-devices communicating over the Internet. The end devices are made with fewer resources and are low battery-powered. These resource-constrained devices are exposed to various security and privacy concerns over publicly available Internet communication. Thus, it becomes essential to provide lightweight security solutions to safeguard data and user privacy. Elliptic Curve Cryptography (ECC) can be used to generate the digital signature and also encrypt the data. The method can be evaluated on a real-time testbed deployed using Raspberry Pi3 devices and every message transmitted is subjected to ECC. …


Application Of Machine Learning And Cyber Security In Smart Grid, Soham Dutta Dr. Nov 2022

Application Of Machine Learning And Cyber Security In Smart Grid, Soham Dutta Dr.

Technical Collection

Unplanned islanding of microgrids is a major hindrance in providing continuous power supply to the critical loads. The detection of these islanding instants needs to be very fast so that the distributed generators (DG) are able to take control actions in minimum time. Due to high quality data at a rapid rate, micro phasor measurement unit (μ-PMU) are becoming widely popular in distribution system and micro grids. These μ-PMUs can be leveraged for island detection. However, the working of μ-PMU is hugely dependent on communication network for data transmission which is prone to cyber-attacks. In view of the above facts, …


Cnn-Based Dendrite Core Detection From Microscopic Images Of Directionally Solidified Ni-Base Alloys, Xiaoguang Li Oct 2022

Cnn-Based Dendrite Core Detection From Microscopic Images Of Directionally Solidified Ni-Base Alloys, Xiaoguang Li

Theses and Dissertations

Dendrite core is the center point of the dendrite. The information of dendrite core is very helpful for material scientists to analyze the properties of materials. Therefore, detecting the dendrite core is a very important task in the material science field. Meanwhile, because of some special properties of the dendrites, this task is also very challenging. Different from the typical detection problems in the computer vision field, detecting the dendrite core aims to detect a single point location instead of the bounding-box. As a result, the existing regressing bounding-box based detection methods can not work well on this task because …