Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

PDF

Deep learning

Institution
Publication Year
Publication
Publication Type

Articles 211 - 233 of 233

Full-Text Articles in Engineering

Transfer Learning With Deep Recurrent Neural Networks For Remaining Useful Life Estimation, Ansi Zhang, Honglei Wang, Shaobo Li, Yuxin Cui, Guanci Yang, Jianjun Hu Nov 2018

Transfer Learning With Deep Recurrent Neural Networks For Remaining Useful Life Estimation, Ansi Zhang, Honglei Wang, Shaobo Li, Yuxin Cui, Guanci Yang, Jianjun Hu

Faculty Publications

Prognostics, such as remaining useful life (RUL) prediction, is a crucial task in condition-based maintenance. A major challenge in data-driven prognostics is the difficulty of obtaining a sufficient number of samples of failure progression. However, for traditional machine learning methods and deep neural networks, enough training data is a prerequisite to train good prediction models. In this work, we proposed a transfer learning algorithm based on Bi-directional Long Short-Term Memory (BLSTM) recurrent neural networks for RUL estimation, in which the models can be first trained on different but related datasets and then fine-tuned by the target dataset. Extensive experimental results …


End-To-End Convolutional Neural Network Model For Gear Fault Diagnosis Based On Sound Signals, Yong Yao, Honglei Wang, Shaobo Li, Zhongnhao Liu, Gui Gui, Yabo Dan, Jianjun Hu Sep 2018

End-To-End Convolutional Neural Network Model For Gear Fault Diagnosis Based On Sound Signals, Yong Yao, Honglei Wang, Shaobo Li, Zhongnhao Liu, Gui Gui, Yabo Dan, Jianjun Hu

Faculty Publications

Currently gear fault diagnosis is mainly based on vibration signals with a few studies on acoustic signal analysis. However, vibration signal acquisition is limited by its contact measuring while traditional acoustic-based gear fault diagnosis relies heavily on prior knowledge of signal processing techniques and diagnostic expertise. In this paper, a novel deep learning-based gear fault diagnosis method is proposed based on sound signal analysis. By establishing an end-to-end convolutional neural network (CNN), the time and frequency domain signals can be fed into the model as raw signals without feature engineering. Moreover, multi-channel information from different microphones can also be fused …


Product Innovation Design Based On Deep Learning And Kansei Engineering, Huafeng Quan, Shaobo Li, Jianjun Hu Aug 2018

Product Innovation Design Based On Deep Learning And Kansei Engineering, Huafeng Quan, Shaobo Li, Jianjun Hu

Faculty Publications

Creative product design is becoming critical to the success of many enterprises. However, the conventional product innovation process is hindered by two major challenges: the difficulty to capture users’ preferences and the lack of intuitive approaches to visually inspire the designer, which is especially true in fashion design and form design of many other types of products. In this paper, we propose to combine Kansei engineering and the deep learning for product innovation (KENPI) framework, which can transfer color, pattern, etc. of a style image in real time to a product’s shape automatically. To capture user preferences, we combine Kansei …


Design And Implementation Of A Domain Specific Language For Deep Learning, Xiao Bing Huang May 2018

Design And Implementation Of A Domain Specific Language For Deep Learning, Xiao Bing Huang

Theses and Dissertations

\textit {Deep Learning} (DL) has found great success in well-diversified areas such as machine vision, speech recognition, big data analysis, and multimedia understanding recently. However, the existing state-of-the-art DL frameworks, e.g. Caffe2, Theano, TensorFlow, MxNet, Torch7, and CNTK, are programming libraries with fixed user interfaces, internal representations, and execution environments. Modifying the code of DL layers or data structure is very challenging without in-depth understanding of the underlying implementation. The optimization of the code and execution in these tools is often limited and relies on the specific DL computation graph manipulation and scheduling that lack systematic and universal strategies. Furthermore, …


Comparative Study Of Deep Learning Models For Network Intrusion Detection, Brian Lee, Sandhya Amaresh, Clifford Green, Daniel Engels Apr 2018

Comparative Study Of Deep Learning Models For Network Intrusion Detection, Brian Lee, Sandhya Amaresh, Clifford Green, Daniel Engels

SMU Data Science Review

In this paper, we present a comparative evaluation of deep learning approaches to network intrusion detection. A Network Intrusion Detection System (NIDS) is a critical component of every Internet connected system due to likely attacks from both external and internal sources. A NIDS is used to detect network born attacks such as Denial of Service (DoS) attacks, malware replication, and intruders that are operating within the system. Multiple deep learning approaches have been proposed for intrusion detection systems. We evaluate three models, a vanilla deep neural net (DNN), self-taught learning (STL) approach, and Recurrent Neural Network (RNN) based Long Short …


Patent Keyword Extraction Algorithm Based On Distributed Representation For Patent Classification, Jie Hu, Shaobo Li, Yong Yao, Liya Yu, Guanci Yang, Jianjun Hu Feb 2018

Patent Keyword Extraction Algorithm Based On Distributed Representation For Patent Classification, Jie Hu, Shaobo Li, Yong Yao, Liya Yu, Guanci Yang, Jianjun Hu

Faculty Publications

Many text mining tasks such as text retrieval, text summarization, and text comparisons depend on the extraction of representative keywords from the main text. Most existing keyword extraction algorithms are based on discrete bag-of-words type of word representation of the text. In this paper, we propose a patent keyword extraction algorithm (PKEA) based on the distributed Skip-gram model for patent classification. We also develop a set of quantitative performance measures for keyword extraction evaluation based on information gain and cross-validation, based on Support Vector Machine (SVM) classification, which are valuable when human-annotated keywords are not available. We used a standard …


Deep Recurrent Learning For Efficient Image Recognition Using Small Data, Mahbubul Alam Jan 2018

Deep Recurrent Learning For Efficient Image Recognition Using Small Data, Mahbubul Alam

Electrical & Computer Engineering Theses & Dissertations

Recognition is fundamental yet open and challenging problem in computer vision. Recognition involves the detection and interpretation of complex shapes of objects or persons from previous encounters or knowledge. Biological systems are considered as the most powerful, robust and generalized recognition models. The recent success of learning based mathematical models known as artificial neural networks, especially deep neural networks, have propelled researchers to utilize such architectures for developing bio-inspired computational recognition models. However, the computational complexity of these models increases proportionally to the challenges posed by the recognition problem, and more importantly, these models require a large amount of data …


Review Of Deep Learning Methods In Robotic Grasp Detection, Shehan Caldera, Alexander Rassau, Douglas Chai Jan 2018

Review Of Deep Learning Methods In Robotic Grasp Detection, Shehan Caldera, Alexander Rassau, Douglas Chai

Research outputs 2014 to 2021

For robots to attain more general-purpose utility, grasping is a necessary skill to master. Such general-purpose robots may use their perception abilities to visually identify grasps for a given object. A grasp describes how a robotic end-effector can be arranged to securely grab an object and successfully lift it without slippage. Traditionally, grasp detection requires expert human knowledge to analytically form the task-specific algorithm, but this is an arduous and time-consuming approach. During the last five years, deep learning methods have enabled significant advancements in robotic vision, natural language processing, and automated driving applications. The successful results of these methods …


Deep Learning Based Brain Tumor Classification And Detection System, Ali̇ Ari, Davut Hanbay Jan 2018

Deep Learning Based Brain Tumor Classification And Detection System, Ali̇ Ari, Davut Hanbay

Turkish Journal of Electrical Engineering and Computer Sciences

The brain cancer treatment process depends on the physician's experience and knowledge. For this reason, using an automated tumor detection system is extremely important to aid radiologists and physicians to detect brain tumors. The proposed method has three stages, which are preprocessing, the extreme learning machine local receptive fields (ELM-LRF) based tumor classification, and image processing based tumor region extraction. At first, nonlocal means and local smoothing methods were used to remove possible noises. In the second stage, cranial magnetic resonance (MR) images were classified as benign or malignant by using ELM-LRF. In the third stage, the tumors were segmented. …


Estimating Left Ventricular Volume With Roi-Based Convolutional Neural Network, Feng Zhu Jan 2018

Estimating Left Ventricular Volume With Roi-Based Convolutional Neural Network, Feng Zhu

Turkish Journal of Electrical Engineering and Computer Sciences

The volume of the human left ventricular (LV) chamber is an important indicator for diagnosing heart disease. Although LV volume can be measured manually with cardiac magnetic resonance imaging (MRI), the process is difficult and time-consuming for experienced cardiologists. This paper presents an end-to-end segmentation-free method that estimates LV volume from MRI images directly. The method initially uses Fourier transform and a regression filter to calculate the region of interest that contains the LV chambers. Then convolutional neural networks are trained to estimate the end-diastolic volume (EDV) and end-systolic volume (ESV). The resulting models accurately estimate the EDV and ESV …


Automated Tree-Level Forest Quantification Using Airborne Lidar, Hamid Hamraz Jan 2018

Automated Tree-Level Forest Quantification Using Airborne Lidar, Hamid Hamraz

Theses and Dissertations--Computer Science

Traditional forest management relies on a small field sample and interpretation of aerial photography that not only are costly to execute but also yield inaccurate estimates of the entire forest in question. Airborne light detection and ranging (LiDAR) is a remote sensing technology that records point clouds representing the 3D structure of a forest canopy and the terrain underneath. We present a method for segmenting individual trees from the LiDAR point clouds without making prior assumptions about tree crown shapes and sizes. We then present a method that vertically stratifies the point cloud to an overstory and multiple understory tree …


Smart Augmented Reality Instructional System For Mechanical Assembly, Ze-Hao Lai Jan 2018

Smart Augmented Reality Instructional System For Mechanical Assembly, Ze-Hao Lai

Masters Theses

"Quality and efficiency are pivotal indicators of a manufacturing company. Many companies are suffering from shortage of experienced workers across the production line to perform complex assembly tasks such as assembly of an aircraft engine. This could lead to a significant financial loss. In order to further reduce time and error in an assembly, a smart system consisting of multi-modal Augmented Reality (AR) instructions with the support of a deep learning network for tool detection is introduced. The multi-modal smart AR is designed to provide on-site information including various visual renderings with a fine-tuned Region-based Convolutional Neural Network, which is …


Intent Recognition In Smart Living Through Deep Recurrent Neural Networks, Xiang Zhang, Lina Yao, Chaoran Huang, Quan Z. Sheng, Xianzhi Wang Nov 2017

Intent Recognition In Smart Living Through Deep Recurrent Neural Networks, Xiang Zhang, Lina Yao, Chaoran Huang, Quan Z. Sheng, Xianzhi Wang

Research Collection School Of Computing and Information Systems

Electroencephalography (EEG) signal based intent recognition has recently attracted much attention in both academia and industries, due to helping the elderly or motor-disabled people controlling smart devices to communicate with outer world. However, the utilization of EEG signals is challenged by low accuracy, arduous and time-consuming feature extraction. This paper proposes a 7-layer deep learning model to classify raw EEG signals with the aim of recognizing subjects’ intents, to avoid the time consumed in pre-processing and feature extraction. The hyper-parameters are selected by an Orthogonal Array experiment method for efficiency. Our model is applied to an open EEG dataset provided …


Hierarchical Fusion Based Deep Learning Framework For Lung Nodule Classification, Kazim Sekeroglu Oct 2017

Hierarchical Fusion Based Deep Learning Framework For Lung Nodule Classification, Kazim Sekeroglu

LSU Doctoral Dissertations

Lung cancer is the leading cancer type that causes the mortality in both men and women. Computer aided detection (CAD) and diagnosis systems can play a very important role for helping the physicians in cancer treatments. This dissertation proposes a CAD framework that utilizes a hierarchical fusion based deep learning model for detection of nodules from the stacks of 2D images. In the proposed hierarchical approach, a decision is made at each level individually employing the decisions from the previous level. Further, individual decisions are computed for several perspectives of a volume of interest (VOI). This study explores three different …


An Ensemble Deep Convolutional Neural Network Model With Improved D-S Evidence Fusion For Bearing Fault Diagnosis, Shaobo Li, Guoka Liu, Xianghong Tang, Jianguang Lu, Jianjun Hu Jul 2017

An Ensemble Deep Convolutional Neural Network Model With Improved D-S Evidence Fusion For Bearing Fault Diagnosis, Shaobo Li, Guoka Liu, Xianghong Tang, Jianguang Lu, Jianjun Hu

Faculty Publications

Intelligent machine health monitoring and fault diagnosis are becoming increasingly important for modern manufacturing industries. Current fault diagnosis approaches mostly depend on expert-designed features for building prediction models. In this paper, we proposed IDSCNN, a novel bearing fault diagnosis algorithm based on ensemble deep convolutional neural networks and an improved Dempster–Shafer theory based evidence fusion. The convolutional neural networks take the root mean square (RMS) maps from the FFT (Fast Fourier Transformation) features of the vibration signals from two sensors as inputs. The improved D-S evidence theory is implemented via distance matrix from evidences and modified Gini Index. Extensive evaluations …


Speech Based Machine Learning Models For Emotional State Recognition And Ptsd Detection, Debrup Banerjee Jul 2017

Speech Based Machine Learning Models For Emotional State Recognition And Ptsd Detection, Debrup Banerjee

Electrical & Computer Engineering Theses & Dissertations

Recognition of emotional state and diagnosis of trauma related illnesses such as posttraumatic stress disorder (PTSD) using speech signals have been active research topics over the past decade. A typical emotion recognition system consists of three components: speech segmentation, feature extraction and emotion identification. Various speech features have been developed for emotional state recognition which can be divided into three categories, namely, excitation, vocal tract and prosodic. However, the capabilities of different feature categories and advanced machine learning techniques have not been fully explored for emotion recognition and PTSD diagnosis. For PTSD assessment, clinical diagnosis through structured interviews is a …


Deepmon: Mobile Gpu-Based Deep Learning Framework For Continuous Vision Applications, Nguyen Loc Huynh, Youngki Lee, Rajesh Krishna Balan Jun 2017

Deepmon: Mobile Gpu-Based Deep Learning Framework For Continuous Vision Applications, Nguyen Loc Huynh, Youngki Lee, Rajesh Krishna Balan

Research Collection School Of Computing and Information Systems

The rapid emergence of head-mounted devices such as the Microsoft Holo-lens enables a wide variety of continuous vision applications. Such applications often adopt deep-learning algorithms such as CNN and RNN to extract rich contextual information from the first-person-view video streams. Despite the high accuracy, use of deep learning algorithms in mobile devices raises critical challenges, i.e., high processing latency and power consumption. In this paper, we propose DeepMon, a mobile deep learning inference system to run a variety of deep learning inferences purely on a mobile device in a fast and energy-efficient manner. For this, we designed a suite of …


Demo: Deepmon - Building Mobile Gpu Deep Learning Models For Continuous Vision Applications, Loc Nguyen Huynh, Rajesh Krishna Balan, Youngki Lee Jun 2017

Demo: Deepmon - Building Mobile Gpu Deep Learning Models For Continuous Vision Applications, Loc Nguyen Huynh, Rajesh Krishna Balan, Youngki Lee

Research Collection School Of Computing and Information Systems

Deep learning has revolutionized vision sensing applications in terms of accuracy comparing to other techniques. Its breakthrough comes from the ability to extract complex high level features directly from sensor data. However, deep learning models are still yet to be natively supported on mobile devices due to high computational requirements. In this paper, we present DeepMon, a next generation of DeepSense [1] framework, to enable deep learning models on conventional mobile devices (e.g. Samsung Galaxy S7) for continuous vision sensing applications. Firstly, Deep-Mon exploits similarity between consecutive video frames for intermediate data caching within models to enhance inference latency. Secondly, …


Deep Models For Engagement Assessment With Scarce Label Information, Feng Li, Guangfan Zhang, Wei Wang, Roger Xu, Tom Schnell, Jonathan Wen, Frederic Mckenzie, Jiang Li Jan 2017

Deep Models For Engagement Assessment With Scarce Label Information, Feng Li, Guangfan Zhang, Wei Wang, Roger Xu, Tom Schnell, Jonathan Wen, Frederic Mckenzie, Jiang Li

Electrical & Computer Engineering Faculty Publications

Task engagement is defined as loadings on energetic arousal (affect), task motivation, and concentration (cognition) [1]. It is usually challenging and expensive to label cognitive state data, and traditional computational models trained with limited label information for engagement assessment do not perform well because of overfitting. In this paper, we proposed two deep models (i.e., a deep classifier and a deep autoencoder) for engagement assessment with scarce label information. We recruited 15 pilots to conduct a 4-h flight simulation from Seattle to Chicago and recorded their electroencephalograph (EEG) signals during the simulation. Experts carefully examined the EEG signals and labeled …


Machine Learning Methods For Medical And Biological Image Computing, Rongjian Li Jul 2016

Machine Learning Methods For Medical And Biological Image Computing, Rongjian Li

Computer Science Theses & Dissertations

Medical and biological imaging technologies provide valuable visualization information of structure and function for an organ from the level of individual molecules to the whole object. Brain is the most complex organ in body, and it increasingly attracts intense research attentions with the rapid development of medical and bio-logical imaging technologies. A massive amount of high-dimensional brain imaging data being generated makes the design of computational methods for efficient analysis on those images highly demanded. The current study of computational methods using hand-crafted features does not scale with the increasing number of brain images, hindering the pace of scientific discoveries …


Energy Consumption Prediction With Big Data: Balancing Prediction Accuracy And Computational Resources, Katarina Grolinger, Miriam Am Capretz, Luke Seewald Jun 2016

Energy Consumption Prediction With Big Data: Balancing Prediction Accuracy And Computational Resources, Katarina Grolinger, Miriam Am Capretz, Luke Seewald

Electrical and Computer Engineering Publications

In recent years, advances in sensor technologies and expansion of smart meters have resulted in massive growth of energy data sets. These Big Data have created new opportunities for energy prediction, but at the same time, they impose new challenges for traditional technologies. On the other hand, new approaches for handling and processing these Big Data have emerged, such as MapReduce, Spark, Storm, and Oxdata H2O. This paper explores how findings from machine learning with Big Data can benefit energy consumption prediction. An approach based on local learning with support vector regression (SVR) is presented. Although local learning itself is …


Learning From Minimally Labeled Data With Accelerated Convolutional Neural Networks, Aysegul Dundar Apr 2016

Learning From Minimally Labeled Data With Accelerated Convolutional Neural Networks, Aysegul Dundar

Open Access Dissertations

The main objective of an Artificial Vision Algorithm is to design a mapping function that takes an image as an input and correctly classifies it into one of the user-determined categories. There are several important properties to be satisfied by the mapping function for visual understanding. First, the function should produce good representations of the visual world, which will be able to recognize images independently of pose, scale and illumination. Furthermore, the designed artificial vision system has to learn these representations by itself. Recent studies on Convolutional Neural Networks (ConvNets) produced promising advancements in visual understanding. These networks attain significant …


Online Multi-Stage Deep Architectures For Feature Extraction And Object Recognition, Derek Christopher Rose Aug 2013

Online Multi-Stage Deep Architectures For Feature Extraction And Object Recognition, Derek Christopher Rose

Doctoral Dissertations

Multi-stage visual architectures have recently found success in achieving high classification accuracies over image datasets with large variations in pose, lighting, and scale. Inspired by techniques currently at the forefront of deep learning, such architectures are typically composed of one or more layers of preprocessing, feature encoding, and pooling to extract features from raw images. Training these components traditionally relies on large sets of patches that are extracted from a potentially large image dataset. In this context, high-dimensional feature space representations are often helpful for obtaining the best classification performances and providing a higher degree of invariance to object transformations. …