Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

An Improved Fastslam Framework Using Soft Computing, Ramazan Havangi, Mohammad Ali Nekoui, Mohammad Teshnehlab Jan 2012

An Improved Fastslam Framework Using Soft Computing, Ramazan Havangi, Mohammad Ali Nekoui, Mohammad Teshnehlab

Turkish Journal of Electrical Engineering and Computer Sciences

FastSLAM is a framework for simultaneous localization and mapping (SLAM) using a Rao-Blackwellized particle filter. However, FastSLAM degenerates over time. This degeneracy is due to the fact that a particle set estimating the pose of the robot loses its diversity. One of the main reasons for losing particle diversity in FastSLAM is sample impoverishment. In this case, most of the particle weights are insignificant. Another problem of FastSLAM relates to the design of an extended Kalman filter (EKF) for the landmark position's estimation. The performance of the EKF and the quality of the estimation depend heavily on correct a priori …


H-Infinity Estimation For Fuzzy Membership Function Optimization, Daniel J. Simon Nov 2005

H-Infinity Estimation For Fuzzy Membership Function Optimization, Daniel J. Simon

Electrical and Computer Engineering Faculty Publications

Given a fuzzy logic system, how can we determine the membership functions that will result in the best performance? If we constrain the membership functions to a specific shape (e.g., triangles or trapezoids) then each membership function can be parameterized by a few variables and the membership optimization problem can be reduced to a parameter optimization problem. The parameter optimization problem can then be formulated as a nonlinear filtering problem. In this paper we solve the nonlinear filtering problem using H state estimation theory. However, the membership functions that result from this approach are not (in general) sum normal. …


Training Radial Basis Neural Networks With The Extended Kalman Filter, Daniel J. Simon Oct 2002

Training Radial Basis Neural Networks With The Extended Kalman Filter, Daniel J. Simon

Electrical and Computer Engineering Faculty Publications

Radial basis function (RBF) neural networks provide attractive possibilities for solving signal processing and pattern classification problems. Several algorithms have been proposed for choosing the RBF prototypes and training the network. The selection of the RBF prototypes and the network weights can be viewed as a system identification problem. As such, this paper proposes the use of the extended Kalman filter for the learning procedure. After the user chooses how many prototypes to include in the network, the Kalman filter simultaneously solves for the prototype vectors and the weight matrix. A decoupled extended Kalman filter is then proposed in order …