Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Profile-Guided Data Management For Heterogeneous Memory Systems, Matthew B. Olson Dec 2021

Profile-Guided Data Management For Heterogeneous Memory Systems, Matthew B. Olson

Doctoral Dissertations

Market forces and technological constraints have led to a gap between CPU and memory performance that has widened for decades. While processor scaling has plateaued in recent years, this gap persists and is not expected to diminish for the foreseeable future. This discrepancy presents a host of challenges for scaling application performance, which have only been exacerbated in recent years, as increasing demands for fast and effective data analytics are driving memory energy, bandwidth, and capacity requirements to new heights.

To address these trends, hardware architects have introduced a plethora of memory technologies. For example, most modern memory systems include …


A Compiler Target Model For Line Associative Registers, Paul S. Eberhart Jan 2019

A Compiler Target Model For Line Associative Registers, Paul S. Eberhart

Theses and Dissertations--Electrical and Computer Engineering

LARs (Line Associative Registers) are very wide tagged registers, used for both register-wide SWAR (SIMD Within a Register )operations and scalar operations on arbitrary fields. LARs include a large data field, type tags, source addresses, and a dirty bit, which allow them to not only replace both caches and registers in the conventional memory hierarchy, but improve on both their functions. This thesis details a LAR-based architecture, and describes the design of a compiler which can generate code for a LAR-based design. In particular, type conversion, alignment, and register allocation are discussed in detail.


Solid State Drive, Shaun A. Steele Jun 2017

Solid State Drive, Shaun A. Steele

Electrical Engineering

This project documents the design and implementation of a solid state drive (SSD). SSDs are a non-volatile memory storage device that competes with hard disk drives. SSDs rely on flash memory, a type of non-volatile memory that is electrically erased and programmed. The appeal of SSDs lies in the fact that they allow a fast, reliable, and durable memory storage device. The goal of this project is to have a working external SSD built from scratch.


Exploring Spin-Transfer-Torque Devices And Memristors For Logic And Memory Applications, Zoha Pajouhi Aug 2016

Exploring Spin-Transfer-Torque Devices And Memristors For Logic And Memory Applications, Zoha Pajouhi

Open Access Dissertations

As scaling CMOS devices is approaching its physical limits, researchers have begun exploring newer devices and architectures to replace CMOS.

Due to their non-volatility and high density, Spin Transfer Torque (STT) devices are among the most prominent candidates for logic and memory applications. In this research, we first considered a new logic style called All Spin Logic (ASL). Despite its advantages, ASL consumes a large amount of static power; thus, several optimizations can be performed to address this issue. We developed a systematic methodology to perform the optimizations to ensure stable operation of ASL.

Second, we investigated reliable design of …


Compacting Loads And Stores For Code Size Reduction, Isaac Asay Mar 2014

Compacting Loads And Stores For Code Size Reduction, Isaac Asay

Master's Theses

It is important for compilers to generate executable code that is as small as possible, particularly when generating code for embedded systems. One method of reducing code size is to use instruction set architectures (ISAs) that support combining multiple operations into single operations. The ARM ISA allows for combining multiple memory operations to contiguous memory addresses into a single operation. The LLVM compiler contains a specific memory optimization to perform this combining of memory operations, called ARMLoadStoreOpt. This optimization, however, relies on another optimization (ARMPreAllocLoadStoreOpt) to move eligible memory operations into proximity in order to perform properly. This mover optimization …


Theory, Synthesis, And Application Of Adiabatic And Reversible Logic Circuits For Security Applications, Matthew Arthur Morrison Nov 2013

Theory, Synthesis, And Application Of Adiabatic And Reversible Logic Circuits For Security Applications, Matthew Arthur Morrison

USF Tampa Graduate Theses and Dissertations

Programmable reversible logic is emerging as a prospective logic design style for implementation in modern nanotechnology and quantum computing with minimal impact on circuit heat generation. Adiabatic logic is a design methodology for reversible logic in CMOS where the current flow through the circuit is controlled such that the energy dissipation due to switching and capacitor dissipation is minimized. Recent advances in reversible logic using and quantum computer algorithms allow for improved computer architectures. Production of cost-effective Secure Integrated Chips, such as Smart Cards, requires hardware designers to consider tradeoffs in size, security, and power consumption. In order to design …