Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 174

Full-Text Articles in Engineering

Intelligent Millimeter-Wave System For Human Activity Monitoring For Telemedicine, Abdullah K. Alhazmi, Mubarak A. Alanazi, Awwad H. Alshehry, Saleh M. Alshahry, Jennifer Jaszek, Cameron Djukic, Anna Brown, Kurt Jackson, Vamsy P. Chodavarapu Jan 2024

Intelligent Millimeter-Wave System For Human Activity Monitoring For Telemedicine, Abdullah K. Alhazmi, Mubarak A. Alanazi, Awwad H. Alshehry, Saleh M. Alshahry, Jennifer Jaszek, Cameron Djukic, Anna Brown, Kurt Jackson, Vamsy P. Chodavarapu

Electrical and Computer Engineering Faculty Publications

Telemedicine has the potential to improve access and delivery of healthcare to diverse and aging populations. Recent advances in technology allow for remote monitoring of physiological measures such as heart rate, oxygen saturation, blood glucose, and blood pressure. However, the ability to accurately detect falls and monitor physical activity remotely without invading privacy or remembering to wear a costly device remains an ongoing concern. Our proposed system utilizes a millimeter-wave (mmwave) radar sensor (IWR6843ISK-ODS) connected to an NVIDIA Jetson Nano board for continuous monitoring of human activity. We developed a PointNet neural network for real-time human activity monitoring that can …


Effective Short Text Classification Via The Fusion Of Hybrid Features For Iot Social Data, Xiong Luo, Zhijian Yu, Zhigang Zhao, Wenbing Zhao, Jenq-Haur Wang Dec 2022

Effective Short Text Classification Via The Fusion Of Hybrid Features For Iot Social Data, Xiong Luo, Zhijian Yu, Zhigang Zhao, Wenbing Zhao, Jenq-Haur Wang

Electrical and Computer Engineering Faculty Publications

Nowadays short texts can be widely found in various social data in relation to the 5G-enabled Internet of Things (IoT). Short text classification is a challenging task due to its sparsity and the lack of context. Previous studies mainly tackle these problems by enhancing the semantic information or the statistical information individually. However, the improvement achieved by a single type of information is limited, while fusing various information may help to improve the classification accuracy more effectively. To fuse various information for short text classification, this article proposes a feature fusion method that integrates the statistical feature and the comprehensive …


Towards A Low-Cost Solution For Gait Analysis Using Millimeter Wave Sensor And Machine Learning, Mubarak A. Alanazi, Abdullah K. Alhazmi, Osama Alsattam, Kara Gnau, Meghan Brown, Shannon Thiel, Kurt Jackson, Vamsy P. Chodavarapu Aug 2022

Towards A Low-Cost Solution For Gait Analysis Using Millimeter Wave Sensor And Machine Learning, Mubarak A. Alanazi, Abdullah K. Alhazmi, Osama Alsattam, Kara Gnau, Meghan Brown, Shannon Thiel, Kurt Jackson, Vamsy P. Chodavarapu

Electrical and Computer Engineering Faculty Publications

Human Activity Recognition (HAR) that includes gait analysis may be useful for various rehabilitation and telemonitoring applications. Current gait analysis methods, such as wearables or cameras, have privacy and operational constraints, especially when used with older adults. Millimeter-Wave (MMW) radar is a promising solution for gait applications because of its low-cost, better privacy, and resilience to ambient light and climate conditions. This paper presents a novel human gait analysis method that combines the micro-Doppler spectrogram and skeletal pose estimation using MMW radar for HAR. In our approach, we used the Texas Instruments IWR6843ISK-ODS MMW radar to obtain the micro-Doppler spectrogram …


Resampling And Super-Resolution Of Hexagonally Sampled Images Using Deep Learning, Dylan Flaute, Russell C. Hardie, Hamed Elwarfalli Oct 2021

Resampling And Super-Resolution Of Hexagonally Sampled Images Using Deep Learning, Dylan Flaute, Russell C. Hardie, Hamed Elwarfalli

Electrical and Computer Engineering Faculty Publications

Super-resolution (SR) aims to increase the resolution of imagery. Applications include security, medical imaging, and object recognition. We propose a deep learning-based SR system that takes a hexagonally sampled low-resolution image as an input and generates a rectangularly sampled SR image as an output. For training and testing, we use a realistic observation model that includes optical degradation from diffraction and sensor degradation from detector integration. Our SR approach first uses non-uniform interpolation to partially upsample the observed hexagonal imagery and convert it to a rectangular grid. We then leverage a state-of-the-art convolutional neural network (CNN) architecture designed for SR …


On The Impact Of Gravity Compensation On Reinforcement Learning In Goal-Reaching Tasks For Robotic Manipulators, Jonathan Fugal, Hasan A. Poonawala, Jihye Bae Mar 2021

On The Impact Of Gravity Compensation On Reinforcement Learning In Goal-Reaching Tasks For Robotic Manipulators, Jonathan Fugal, Hasan A. Poonawala, Jihye Bae

Electrical and Computer Engineering Faculty Publications

Advances in machine learning technologies in recent years have facilitated developments in autonomous robotic systems. Designing these autonomous systems typically requires manually specified models of the robotic system and world when using classical control-based strategies, or time consuming and computationally expensive data-driven training when using learning-based strategies. Combination of classical control and learning-based strategies may mitigate both requirements. However, the performance of the combined control system is not obvious given that there are two separate controllers. This paper focuses on one such combination, which uses gravity-compensation together with reinforcement learning (RL). We present a study of the effects of gravity …


Color-Compressive Bilateral Filter And Nonlocal Means For High-Dimensional Images, Christina Karam, Kenjiro Sugimoto, Keigo Hirakawa Mar 2021

Color-Compressive Bilateral Filter And Nonlocal Means For High-Dimensional Images, Christina Karam, Kenjiro Sugimoto, Keigo Hirakawa

Electrical and Computer Engineering Faculty Publications

We propose accelerated implementations of bilateral filter (BF) and nonlocal means (NLM) called color-compressive bilateral filter (CCBF) and color-compressive nonlocal means (CCNLM). CCBF and CCNLM are random filters, whose Monte-Carlo averaged output images are identical to the output images of conventional BF and NLM, respectively. However, CCBF and CCNLM are considerably faster because the spatial processing of multiple color channels are combined into a single random filtering process. This implies that the complexity of CCBF and CCNLM is less sensitive to color dimension (e.g., hyperspectral images) relatively to other BF and NLM methods. We experimentally verified that the execution time …


On Correctness, Precision, And Performance In Quantitative Verification: Qcomp 2020 Competition Report, Carlos E. Budde, Arnd Hartmanns, Michaela Klauck, Jan Křetínský, David Parker, Tim Quatmann, Andrea Turrini, Zhen Zhang Oct 2020

On Correctness, Precision, And Performance In Quantitative Verification: Qcomp 2020 Competition Report, Carlos E. Budde, Arnd Hartmanns, Michaela Klauck, Jan Křetínský, David Parker, Tim Quatmann, Andrea Turrini, Zhen Zhang

Electrical and Computer Engineering Faculty Publications

Quantitative verification tools compute probabilities, expected rewards, or steady-state values for formal models of stochastic and timed systems. Exact results often cannot be obtained efficiently, so most tools use floating-point arithmetic in iterative algorithms that approximate the quantity of interest. Correctness is thus defined by the desired precision and determines performance. In this paper, we report on the experimental evaluation of these trade-offs performed in QComp 2020: the second friendly competition of tools for the analysis of quantitative formal models. We survey the precision guarantees - ranging from exact rational results to statistical confidence statements - offered by the nine …


Ensemble Lung Segmentation System Using Deep Neural Networks, Redha A. Ali, Russell C. Hardie, Hussin K. Ragb Jan 2020

Ensemble Lung Segmentation System Using Deep Neural Networks, Redha A. Ali, Russell C. Hardie, Hussin K. Ragb

Electrical and Computer Engineering Faculty Publications

Lung segmentation is a significant step in developing computer-aided diagnosis (CAD) using Chest Radiographs (CRs). CRs are used for diagnosis of the 2019 novel coronavirus disease (COVID-19), lung cancer, tuberculosis, and pneumonia. Hence, developing a Computer-Aided Detection (CAD) system would provide a second opinion to help radiologists in the reading process, increase objectivity, and reduce the workload. In this paper, we present the implementation of our ensemble deep learning model for lung segmentation. This model is based on the original DeepLabV3+, which is the extended model of DeepLabV3. Our model utilizes various architectures as a backbone of DeepLabV3+, such as …


The Internet Of Energy: Architectures, Cyber Security, And Applications, Kun Wang, Yan Zhang, Song Guo, Mianxiong Dong, Rose Qingyang Hu, Lei He Dec 2018

The Internet Of Energy: Architectures, Cyber Security, And Applications, Kun Wang, Yan Zhang, Song Guo, Mianxiong Dong, Rose Qingyang Hu, Lei He

Electrical and Computer Engineering Faculty Publications

The energy crisis and carbon emissions have become two critical concerns globally. As a very promising solution, the concept of Internet of Energy has appeared to tackle these challenges. The Internet of Energy is a new power generation paradigm developing a revolutionary vision of smart grids into the Internet. The communication infrastructure is an essential component for implementing the Internet of Energy. A scalable and robust communication infrastructure is crucial in both operating and maintaining smart energy systems. The wide-scale implementation and development of Internet of Energy into industrial applications should take into account the following challenges:


Chaotic Phase-Coded Waveforms With Space-Time Complementary Coding For Mimo Radar Applications, Sheng Hong, Fuhui Zhou, Yantao Dong, Zhixin Zhao, Yuhao Wang, Maosong Yan Jul 2018

Chaotic Phase-Coded Waveforms With Space-Time Complementary Coding For Mimo Radar Applications, Sheng Hong, Fuhui Zhou, Yantao Dong, Zhixin Zhao, Yuhao Wang, Maosong Yan

Electrical and Computer Engineering Faculty Publications

A framework for designing orthogonal chaotic phase-coded waveforms with space-time complementary coding (STCC) is proposed for multiple-input multiple-output (MIMO) radar applications. The phase-coded waveform set to be transmitted is generated with an arbitrary family size and an arbitrary code length by using chaotic sequences. Due to the properties of chaos, this chaotic waveform set has many advantages in performance, such as anti-interference and low probability of intercept. However, it cannot be directly exploited due to the high range sidelobes, mutual interferences, and Doppler intolerance. In order to widely implement it in practice, we optimize the chaotic phase-coded waveform set from …


Advanced Recurrent Network-Based Hybrid Acoustic Models For Low Resource Speech Recognition, Jian Kang, Wei-Qiang Zhang, Wei-Wei Liu, Jia Liu, Michael T. Johnson Jul 2018

Advanced Recurrent Network-Based Hybrid Acoustic Models For Low Resource Speech Recognition, Jian Kang, Wei-Qiang Zhang, Wei-Wei Liu, Jia Liu, Michael T. Johnson

Electrical and Computer Engineering Faculty Publications

Recurrent neural networks (RNNs) have shown an ability to model temporal dependencies. However, the problem of exploding or vanishing gradients has limited their application. In recent years, long short-term memory RNNs (LSTM RNNs) have been proposed to solve this problem and have achieved excellent results. Bidirectional LSTM (BLSTM), which uses both preceding and following context, has shown particularly good performance. However, the computational requirements of BLSTM approaches are quite heavy, even when implemented efficiently with GPU-based high performance computers. In addition, because the output of LSTM units is bounded, there is often still a vanishing gradient issue over multiple layers. …


Fault Identification And Location For Distribution Network With Distributed Generations, Wen Fan, Yuan Liao May 2018

Fault Identification And Location For Distribution Network With Distributed Generations, Wen Fan, Yuan Liao

Electrical and Computer Engineering Faculty Publications

Power distribution networks with distributed generations may experience faults. It is essential to promptly locate the fault for fast repair and restoration. This paper presents a novel method for identifying the faulted section and accurate location of faults that occur on power distribution grid. Appropriate matrices are set up to represent meter locations on the grid and the topology of the grid. The voltage and current measurements obtained are utilized to decide the fault sections. Then fault location is determined by solving equations that link measurements and fault locations through bus impedance matrix. The method is applicable to both single …


A Fast And Robust Extrinsic Calibration For Rgb-D Camera Networks, Po-Chang Su, Ju Shen, Wanxin Xu, Sen-Ching S. Cheung, Ying Luo Jan 2018

A Fast And Robust Extrinsic Calibration For Rgb-D Camera Networks, Po-Chang Su, Ju Shen, Wanxin Xu, Sen-Ching S. Cheung, Ying Luo

Electrical and Computer Engineering Faculty Publications

From object tracking to 3D reconstruction, RGB-Depth (RGB-D) camera networks play an increasingly important role in many vision and graphics applications. Practical applications often use sparsely-placed cameras to maximize visibility, while using as few cameras as possible to minimize cost. In general, it is challenging to calibrate sparse camera networks due to the lack of shared scene features across different camera views. In this paper, we propose a novel algorithm that can accurately and rapidly calibrate the geometric relationships across an arbitrary number of RGB-D cameras on a network. Our work has a number of novel features. First, to cope …


On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster May 2017

On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster

Electrical and Computer Engineering Faculty Publications

We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an …


Identity‐Based Schemes For A Secured Big Data And Cloud Ict Framework In Smart Grid System, Feng Ye, Yi Qian, Rose Qingyang Hu Dec 2016

Identity‐Based Schemes For A Secured Big Data And Cloud Ict Framework In Smart Grid System, Feng Ye, Yi Qian, Rose Qingyang Hu

Electrical and Computer Engineering Faculty Publications

Smart grid is an intelligent cyber physical system (CPS). The CPS generates a massive amount of data for efficient grid operation. In this paper, a big data‐driven, cloud‐based information and communication technology (ICT) framework for smart grid CPS is proposed. The proposed ICT framework deploys hybrid cloud servers to enhance scalability and reliability of smart grid communication infrastructure. Because the data in the ICT framework contains much privacy of customers and important data for automated controlling, the security of data transmission must be ensured. In order to secure the communications over the Internet in the system, identity‐based schemes are proposed …


Recursive Non-Local Means Filter For Video Denoising With Poisson-Gaussian Noise, Redha A. Almahdi, Russell C. Hardie Jul 2016

Recursive Non-Local Means Filter For Video Denoising With Poisson-Gaussian Noise, Redha A. Almahdi, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

In this paper, we describe a new recursive Non-Local means (RNLM) algorithm for video denoising that has been developed by the current authors. Furthermore, we extend this work by incorporating a Poisson-Gaussian noise model. Our new RNLM method provides a computationally efficient means for video denoising, and yields improved performance compared with the single frame NLM and BM3D benchmarks methods. Non-Local means (NLM) based methods of denoising have been applied successfully in various image and video sequence denoising applications. However, direct extension of this method from 2D to 3D for video processing can be computationally demanding. The RNLM approach takes …


Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay Jul 2016

Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay

Electrical and Computer Engineering Faculty Publications

Lung cancer is the leading cause of cancer death in the United States. It usually exhibits its presence with the formation of pulmonary nodules. Nodules are round or oval-shaped growth present in the lung. Computed Tomography (CT) scans are used by radiologists to detect such nodules. Computer Aided Detection (CAD) of such nodules would aid in providing a second opinion to the radiologists and would be of valuable help in lung cancer screening. In this research, we study various feature selection methods for the CAD system framework proposed in FlyerScan. Algorithmic steps of FlyerScan include (i) local contrast enhancement (ii) …


Histogram Of Oriented Phase (Hop): A New Descriptor Based On Phase Congruency, Hussin Ragb, Vijayan K. Asari May 2016

Histogram Of Oriented Phase (Hop): A New Descriptor Based On Phase Congruency, Hussin Ragb, Vijayan K. Asari

Electrical and Computer Engineering Faculty Publications

In this paper we present a low level image descriptor called Histogram of Oriented Phase based on phase congruency concept and the Principal Component Analysis (PCA). Since the phase of the signal conveys more information regarding signal structure than the magnitude, the proposed descriptor can precisely identify and localize image features over the gradient based techniques, especially in the regions affected by illumination changes. The proposed features can be formed by extracting the phase congruency information for each pixel in the image with respect to its neighborhood. Histograms of the phase congruency values of the local regions in the image …


Diffractive Propagation And Recovery Of Modulated (Including Chaotic) Electromagnetic Waves Through Uniform Atmosphere And Modified Von Karman Phase Turbulence, Monish Ranjan Chatterjee, Fathi H.A. Mohamed Apr 2016

Diffractive Propagation And Recovery Of Modulated (Including Chaotic) Electromagnetic Waves Through Uniform Atmosphere And Modified Von Karman Phase Turbulence, Monish Ranjan Chatterjee, Fathi H.A. Mohamed

Electrical and Computer Engineering Faculty Publications

In a parallel approach to recently-used transfer function formalism, a study involving diffraction of modulated electromagnetic (EM) waves through uniform and phase-turbulent atmospheres is reported in this paper. Specifically, the input wave is treated as a modulated optical carrier, represented by use of a sinusoidal phasor with a slowly timevarying envelope. Using phasors and (spatial) Fourier transforms, the complex phasor wave is transmitted across a uniform or turbulent medium using the Kirchhoff-Fresnel integral and the random phase screen.

Some preliminary results are presented comparing non-chaotic and chaotic information transmission through turbulence, outlining possible improvement in performance utilizing the robust features …


Large-Area Object Search And Recovery Using Sector-Based Aerial Acousto-Optic Scanning And Reflection Sensing, Monish Ranjan Chatterjee, Salaheddeen G. Bugoffa Apr 2016

Large-Area Object Search And Recovery Using Sector-Based Aerial Acousto-Optic Scanning And Reflection Sensing, Monish Ranjan Chatterjee, Salaheddeen G. Bugoffa

Electrical and Computer Engineering Faculty Publications

A sector-based angular scanning system intended to identify and spatially locate relatively small objects scattered over a large terrain is described in this paper. The system is modeled as a planar surface on the horizontal (XY) plane, with an acousto-optic Bragg cell on board an unmanned aerial vehicle (UAV) operating in the XZ plane.

The Bragg cell is excited by a chirped RF signal with a designed frequency ramp. As the scanning beam reflects off the horizontal surface, a detector placed strategically at a suitable altitude (in the analysis shown to be on board the UAV itself) picks up the …


Differential Tilt Variance Effects Of Turbulence In Imagery: Comparing Simulation With Theory, Daniel A. Lemaster, Russell C. Hardie, Szymon Gladysz, Matthew D. Howard, Michael Armand Rucci, Matthew E. Trippel, Jonathan D. Power, Barry K. Karch Apr 2016

Differential Tilt Variance Effects Of Turbulence In Imagery: Comparing Simulation With Theory, Daniel A. Lemaster, Russell C. Hardie, Szymon Gladysz, Matthew D. Howard, Michael Armand Rucci, Matthew E. Trippel, Jonathan D. Power, Barry K. Karch

Electrical and Computer Engineering Faculty Publications

Differential tilt variance is a useful metric for interpreting the distorting effects of turbulence in incoherent imaging systems. In this paper, we compare the theoretical model of differential tilt variance to simulations. Simulation is based on a Monte Carlo wave optics approach with split step propagation. Results show that the simulation closely matches theory. The results also show that care must be taken when selecting a method to estimate tilts.


A New Architecture For Application-Aware Cognitive Multihop Wireless Networks, Trenton Evans, Kossivi Tossou, Feng Ye, Zhihui Shu, Yi Qian, Yaoqing Yang, Hamid Sharif Mar 2016

A New Architecture For Application-Aware Cognitive Multihop Wireless Networks, Trenton Evans, Kossivi Tossou, Feng Ye, Zhihui Shu, Yi Qian, Yaoqing Yang, Hamid Sharif

Electrical and Computer Engineering Faculty Publications

In this article, we propose a new architecture for AC-MWN. Cognitive radio is a technique to adaptively use the spectrum so that the resource can be used more efficiently in a low-cost way. A multihop wireless network can be deployed quickly and flexibly without fixed infrastructure. In our proposed new architecture, we study backbone routing schemes with network cognition, and a routing scheme with network coding and spectrum adaptation. A testbed is implemented to test the proposed schemes for AC-MWN. In addition to basic measurements, we implement a video streaming application based on the proposed AC-MWN architecture using cognitive radios. …


A Real-Time Information Based Demand-Side Management System In Smart Grid, Feng Ye, Yi Qian, Rose Qingyang Hu Feb 2016

A Real-Time Information Based Demand-Side Management System In Smart Grid, Feng Ye, Yi Qian, Rose Qingyang Hu

Electrical and Computer Engineering Faculty Publications

In this paper, we study a real-time information based demand-side management (DSM) system with advanced communication networks in smart grid. DSM can smooth peak-to-average ratio (PAR) of power usage in the grid, which in turn reduces the waste of fuel and the emission of greenhouse gas. We first target to minimize PAR with a centralized scheme. To motivate power suppliers, we further propose another centralized scheme targeting minimum power generation cost. However, customers may not be motivated by a centralized scheme since such a scheme requires total control and privacy from them. A centralized scheme also requires too much real-time …


An Adaptive Security Protocol For A Wireless Sensor‐Based Monitoring Network In Smart Grid Transmission Lines, Xuping Zhang, Feng Ye, Sucheng Fan, Jinghong Guo, Guoliang Xu, Yi Qian Jan 2016

An Adaptive Security Protocol For A Wireless Sensor‐Based Monitoring Network In Smart Grid Transmission Lines, Xuping Zhang, Feng Ye, Sucheng Fan, Jinghong Guo, Guoliang Xu, Yi Qian

Electrical and Computer Engineering Faculty Publications

In this paper, we propose a new security protocol for a wireless sensor network, which is designed for monitoring long range power transmission lines in smart grid. Part of the monitoring network is composed of optical fiber composite over head ground wire (OPGW), thus it can be secured with conventional security protocol. However, the wireless sensor network between two neighboring OPGW gateways remains vulnerable. Our proposed security protocol focuses on the wireless sensor network part, it provides mutual authentication, data integrity, and data confidentiality for both uplink and downlink transmissions between the sensor nodes and the OPGW gateway. Besides, our …


A High Performance Ceramic-Polymer Separator For Lithium Batteries, Jitendra Kumar, Padmakar Kichambare, Amarendra K. Rai, Rabi Bhattacharya, Stanley J. Rodrigues, Guru Subramanyam Jan 2016

A High Performance Ceramic-Polymer Separator For Lithium Batteries, Jitendra Kumar, Padmakar Kichambare, Amarendra K. Rai, Rabi Bhattacharya, Stanley J. Rodrigues, Guru Subramanyam

Electrical and Computer Engineering Faculty Publications

A three-layered (ceramic-polymer-ceramic) hybrid separator was prepared by coating ceramic electrolyte [lithium aluminum germanium phosphate (LAGP)] over both sides of polyethylene (PE) polymer membrane using electron beam physical vapor deposition (EB-PVD) technique. Ionic conductivities of membranes were evaluated after soaking PE and LAGP/PE/LAGP membranes in a 1 Molar (1M) lithium hexafluroarsenate (LiAsF6) electrolyte in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethylmethyl carbonate (EMC) in volume ratio (1:1:1). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were employed to evaluate morphology and structure of the separators before and after cycling performance tests to better understand structure-property correlation. …


Industry-University Collaboration: A University Of Dayton Model, Guru Subramanyam Oct 2015

Industry-University Collaboration: A University Of Dayton Model, Guru Subramanyam

Electrical and Computer Engineering Faculty Publications

This paper introduces industry-university collaboration activities currently in place at the University of Dayton's School of Engineering. These collaborations are important to prepare industry-ready graduates who excel in technical, entrepreneurial, and leadership skills. One of the key curricular components is the industry-sponsored multidisciplinary projects. Industry involvement in advisory committee, strategic research partnerships, and other forms are discussed.


Negative Index In A Lossy Chiral Metamaterial Under First-Order Material Dispersion Using A Drude Model, Tarig A. Algadey, Monish Ranjan Chatterjee Oct 2015

Negative Index In A Lossy Chiral Metamaterial Under First-Order Material Dispersion Using A Drude Model, Tarig A. Algadey, Monish Ranjan Chatterjee

Electrical and Computer Engineering Faculty Publications

Using the Drude model for complex conductivity,phase and group velocities, and indices are calculated under first-order dispersion in chiral metamaterials. Conditions are derived for negative index, and the results compared with parametric analyses.


Spectral And Performance Analysis For The Propagation And Retrieval Of Signals From Modulated Chaos Waves Transmitted Through Modified Von Karman Turbulence, Fathi H.A. Mohamed, Monish Ranjan Chatterjee Oct 2015

Spectral And Performance Analysis For The Propagation And Retrieval Of Signals From Modulated Chaos Waves Transmitted Through Modified Von Karman Turbulence, Fathi H.A. Mohamed, Monish Ranjan Chatterjee

Electrical and Computer Engineering Faculty Publications

A transfer function formalism is applied to track propagation of modulated chaos waves through modified von Karman phase turbulence; the demodulated signal is examined vis-à-vis performance relative to turbulence strength in comparison with non-chaotic propagation.


Translation Of Rabindranath Tagore's 'Ode To Africa', Monish Ranjan Chatterjee Oct 2015

Translation Of Rabindranath Tagore's 'Ode To Africa', Monish Ranjan Chatterjee

Electrical and Computer Engineering Faculty Publications

During his illustrious lifetime, Rabindranath Tagore travelled extensively around the world, spreading inspiration and gaining veneration in most destinations as the emissary of the East and of a deeply futuristic Universalist philosophy. An assessment of the intellectuals and cultural icons of the world whom Tagore encountered, interacted with, and influenced, is both astonishing and indeed still waiting to be adequately evaluated. His exchanges with Einstein, Wells, Rolland, Gide, Freud, Durant, Yeats, Rothenstein, Andrews, Noguchi, Gandhi, Radhakrishnan, Nehru, Bose and numerous others are well-documented. Tagore's literary works and public life centered on rejoicing in and celebrating everything unique and artistic in …


Vanadium Oxide Thin-Film Variable Resistor-Based Rf Switches, Kuanchang Pan, Weisong Wang, Eunsung Shin, Kelvin Freeman, Guru Subramanyam Sep 2015

Vanadium Oxide Thin-Film Variable Resistor-Based Rf Switches, Kuanchang Pan, Weisong Wang, Eunsung Shin, Kelvin Freeman, Guru Subramanyam

Electrical and Computer Engineering Faculty Publications

Vanadium dioxide (VO2) is a unique phase change material (PCM) that possesses a metal-to-insulator transition property. Pristine VO2 has a negative temperature coefficient of resistance, and it undergoes an insulator-to-metal phase change at a transition temperature of 68°C. Such a property makes the VO2 thin-film-based variable resistor (varistor) a good candidate in reconfigurable electronics to be integrated with different RF devices such as inductors, varactors, and antennas. Series single-pole single-throw (SPST) switches with integrated VO2 thin films were designed, fabricated, and tested. The overall size of the device is 380 μm × 600 μm. The SPST switches were fabricated on …