Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Engineering

Analysis Of Methods Of Construction And Application Of Modern Anti-Radar Missiles, A S. Solonar, P A. Khmarski, B M. Mukhammedov, G Sh Tuganov Dec 2022

Analysis Of Methods Of Construction And Application Of Modern Anti-Radar Missiles, A S. Solonar, P A. Khmarski, B M. Mukhammedov, G Sh Tuganov

Technical science and innovation

The analysis of methods of construction and application of modern anti-radar missiles (ARM) is carried out. The analysis allowed us to identify the most distinctive features of ARM such as: high flight speed (600-1200 m/s), limited launch range, different flight paths and it is oriented towards the attacked radar, small effective distribution surface (ESR), due to a sharp increase in the weight and size characteristics of the homing head of the homing head outside the frequency range (from 0.5 to 40 GHz), radio electronic means of the ARM are not created, the large range and high speed of tuning the …


Spatial Analysis Of Bias Corrected Rainfall Data Sets Within Albuquerque, New Mexico Metropolitan Area, Cassy Scarlott- Mcclintock Jul 2020

Spatial Analysis Of Bias Corrected Rainfall Data Sets Within Albuquerque, New Mexico Metropolitan Area, Cassy Scarlott- Mcclintock

Civil Engineering ETDs

The Next Generation Radar (NEXRAD) was implemented as one of the first network-wide operational radar- estimated precipitation products in the United States in 1988. The algorithms within this system bring drastic advancements to operational flood forecasting when compared to prior radars and even rain gage systems. The objectives were; (1) to determine how radar plays a role in estimating precipitation by comparing rainfall accuracy to other sources such as calibrated radar data and gage data within Albuquerque, New Mexico and (2) to determine if distance from the radar affects estimation of rainfall. The sets of data compared were from: (1) …


Ofdm Coupled Compressive Sensing Algorithm For Stepped Frequency Ground Penetrating Radar, Mohamed Metwally Jan 2014

Ofdm Coupled Compressive Sensing Algorithm For Stepped Frequency Ground Penetrating Radar, Mohamed Metwally

Graduate College Dissertations and Theses

Dating back to as far as 1940, the US road and bridge infrastructure system has garnered quite the status for strategically connecting together half a continent. As monumental as the infrastructure's status, is its rate of deterioration, with the average bridge age coming at a disconcerting 50 years. Aside from visual inspection, a battery of non-destructive tests were developed to conduct structural fault assessment and detect laminations, in order to preemptively take preventive measures.

The mainstream commercially favored test is the impulse time domain ground penetrating radar (GPR). An extremely short, high voltage pulse is used to visualize cross-sections of …


Experimental Validation Of A Numerical Forward Model For Tunnel Detection Using Cross-Borehole Radar, Arvin Farid, Jose A. Martinez-Lorenzo, Akram N. Alshawabkeh, Carey M. Rappaport Dec 2012

Experimental Validation Of A Numerical Forward Model For Tunnel Detection Using Cross-Borehole Radar, Arvin Farid, Jose A. Martinez-Lorenzo, Akram N. Alshawabkeh, Carey M. Rappaport

Civil Engineering Faculty Publications and Presentations

The goal of this research is to develop an experimentally validated twodimensional (2D) finite difference frequency domain (FDFD) numerical forward model to study the potential of radar-based tunnel detection. Tunnel detection has become a subject of interest to the nation due to the use of tunnels by illegal immigrants, smugglers, prisoners, assailants, and terrorists. These concerns call for research to nondestructively detect, localize, and monitor tunnels. Nondestructive detection requires robust image reconstruction and inverse models, which in turn need robust forward models. Cross-Well Radar (CWR) modality is used for experimentation to avoid soil-air interface roughness. CWR is not a versatile …


Slope Stability Monitoring Using Remote Sensing Techniques, Omar Alberto Conte Robles May 2012

Slope Stability Monitoring Using Remote Sensing Techniques, Omar Alberto Conte Robles

Graduate Theses and Dissertations

During the past six years the Arkansas State Highway and Transportation Department (AHTD) has spent over nine million dollars repairing slope failures that have occurred in the state of Arkansas. Specifically, higher than average precipitation in 2004 and 2008 led to large quantities of slides, all of which were repaired. Two highways, within the state of Arkansas, with known historical movements along or across the highways are being monitored using traditional surveying techniques and advanced remote sensing techniques. These slides, both of which are located in fill slopes. One a 500-foot long slide located north of Chester, Arkansas, within the …


Cross-Well Radar I: Experimental Simulation Of Cross-Well Tomography And Validation, Arvin Farid, Akram N. Alshawabkeh, Carey M. Rappaport Apr 2012

Cross-Well Radar I: Experimental Simulation Of Cross-Well Tomography And Validation, Arvin Farid, Akram N. Alshawabkeh, Carey M. Rappaport

Akram N. Alshawabkeh

This paper explains and evaluates the potential and limitations of conducting Cross-Well Radar (CWR) in sandy soils. Implementing the experiment and data collection in the absence of any scattering object, and in the presence of an acrylic plate (a representative of dielectric objects, such as DNAPL (dense non-aqueous phase liquid) pools, etc.), as a contrasting object in a water-saturated soil is also studied. To be able to image the signature of any object, more than one pair of receiving and transmitting antennas are required. The paper describes a method to achieve repeatable, reliable, and reproducible laboratory results for different transmitter-receiver …


Experimental Validation Of A Numerical Forward Model For Tunnel Detection Using Cross-Borehole Radar, Arvin Farid, Jose A. Martinez-Lorenzo, Akram N. Alshawabkeh, Carey M. Rappaport Apr 2012

Experimental Validation Of A Numerical Forward Model For Tunnel Detection Using Cross-Borehole Radar, Arvin Farid, Jose A. Martinez-Lorenzo, Akram N. Alshawabkeh, Carey M. Rappaport

Akram N. Alshawabkeh

The goal of this research is to develop an experimentally validated twodimensional (2D) finite difference frequency domain (FDFD) numerical forward model to study the potential of radar-based tunnel detection. Tunnel detection has become a subject of interest to the nation due to the use of tunnels by illegal immigrants, smugglers, prisoners, assailants, and terrorists. These concerns call for research to nondestructively detect, localize, and monitor tunnels. Nondestructive detection requires robust image reconstruction and inverse models, which in turn need robust forward models. Cross-Well Radar (CWR) modality is used for experimentation to avoid soil-air interface roughness. CWR is not a versatile …


Tunnel Detection Using Cross Borehole Radar, Clay Kurison, Arvin M. Farid, Akram N. Alshawabkeh, Carey M. Rappaport Apr 2012

Tunnel Detection Using Cross Borehole Radar, Clay Kurison, Arvin M. Farid, Akram N. Alshawabkeh, Carey M. Rappaport

Akram N. Alshawabkeh

Shallow tunnels present both military and homeland security threats. Smugglers with intentions of avoiding border security have turned tunnels into transit routes for trafficking weapons, people, drugs and other illegal materials. Shallow tunnels are also used by prisoners to escape prisons. While drug and human trafficking have long been border concerns, the threat of international terrorism has transformed the effort to detect tunnels into a national security priority. Imminent threats include assailants entering military fortifications by burrowing under buildings, detonation of high grade explosives from foundations of high security facilities, and high level prisoners escaping detention centers through tunnels. Real-time …


Experimental Validation Of A Numerical Forward Model For Tunnel Detection Using Cross-Borehole Radar, Arvin Farid, Jose A. Martinez-Lorenzo, Akram N. Alshawabkeh, Carey M. Rappaport Apr 2012

Experimental Validation Of A Numerical Forward Model For Tunnel Detection Using Cross-Borehole Radar, Arvin Farid, Jose A. Martinez-Lorenzo, Akram N. Alshawabkeh, Carey M. Rappaport

Jose Martinez-Lorenzo

The goal of this research is to develop an experimentally validated twodimensional (2D) finite difference frequency domain (FDFD) numerical forward model to study the potential of radar-based tunnel detection. Tunnel detection has become a subject of interest to the nation due to the use of tunnels by illegal immigrants, smugglers, prisoners, assailants, and terrorists. These concerns call for research to nondestructively detect, localize, and monitor tunnels. Nondestructive detection requires robust image reconstruction and inverse models, which in turn need robust forward models. Cross-Well Radar (CWR) modality is used for experimentation to avoid soil-air interface roughness. CWR is not a versatile …


Cross-Well Radar I: Experimental Simulation Of Cross-Well Tomography And Validation, Arvin Farid, Akram N. Alshawabkeh, Carey M. Rappaport Apr 2012

Cross-Well Radar I: Experimental Simulation Of Cross-Well Tomography And Validation, Arvin Farid, Akram N. Alshawabkeh, Carey M. Rappaport

Carey Rappaport

This paper explains and evaluates the potential and limitations of conducting Cross-Well Radar (CWR) in sandy soils. Implementing the experiment and data collection in the absence of any scattering object, and in the presence of an acrylic plate (a representative of dielectric objects, such as DNAPL (dense non-aqueous phase liquid) pools, etc.), as a contrasting object in a water-saturated soil is also studied. To be able to image the signature of any object, more than one pair of receiving and transmitting antennas are required. The paper describes a method to achieve repeatable, reliable, and reproducible laboratory results for different transmitter-receiver …


Experimental Validation Of A Numerical Forward Model For Tunnel Detection Using Cross-Borehole Radar, Arvin Farid, Jose A. Martinez-Lorenzo, Akram N. Alshawabkeh, Carey M. Rappaport Apr 2012

Experimental Validation Of A Numerical Forward Model For Tunnel Detection Using Cross-Borehole Radar, Arvin Farid, Jose A. Martinez-Lorenzo, Akram N. Alshawabkeh, Carey M. Rappaport

Carey Rappaport

The goal of this research is to develop an experimentally validated twodimensional (2D) finite difference frequency domain (FDFD) numerical forward model to study the potential of radar-based tunnel detection. Tunnel detection has become a subject of interest to the nation due to the use of tunnels by illegal immigrants, smugglers, prisoners, assailants, and terrorists. These concerns call for research to nondestructively detect, localize, and monitor tunnels. Nondestructive detection requires robust image reconstruction and inverse models, which in turn need robust forward models. Cross-Well Radar (CWR) modality is used for experimentation to avoid soil-air interface roughness. CWR is not a versatile …


Tunnel Detection Using Cross Borehole Radar, Clay Kurison, Arvin M. Farid, Akram N. Alshawabkeh, Carey M. Rappaport Apr 2012

Tunnel Detection Using Cross Borehole Radar, Clay Kurison, Arvin M. Farid, Akram N. Alshawabkeh, Carey M. Rappaport

Carey Rappaport

Shallow tunnels present both military and homeland security threats. Smugglers with intentions of avoiding border security have turned tunnels into transit routes for trafficking weapons, people, drugs and other illegal materials. Shallow tunnels are also used by prisoners to escape prisons. While drug and human trafficking have long been border concerns, the threat of international terrorism has transformed the effort to detect tunnels into a national security priority. Imminent threats include assailants entering military fortifications by burrowing under buildings, detonation of high grade explosives from foundations of high security facilities, and high level prisoners escaping detention centers through tunnels. Real-time …


Cross-Well Radar I: Experimental Simulation Of Cross-Well Tomography And Validation, Arvin Farid, Akram N. Alshawabkeh, Carey M. Rappaport Sep 2009

Cross-Well Radar I: Experimental Simulation Of Cross-Well Tomography And Validation, Arvin Farid, Akram N. Alshawabkeh, Carey M. Rappaport

Civil Engineering Faculty Publications and Presentations

This paper explains and evaluates the potential and limitations of conducting Cross-Well Radar (CWR) in sandy soils. Implementing the experiment and data collection in the absence of any scattering object, and in the presence of an acrylic plate (a representative of dielectric objects, such as DNAPL (dense non-aqueous phase liquid) pools, etc.), as a contrasting object in a water-saturated soil is also studied. To be able to image the signature of any object, more than one pair of receiving and transmitting antennas are required. The paper describes a method to achieve repeatable, reliable, and reproducible laboratory results for different transmitter-receiver …


Generating Multi-Sensor Precipitation Estimates Over Radar Gap Areas, Shayesteh E. Mahani, Reza Khanbilvardi Jan 2009

Generating Multi-Sensor Precipitation Estimates Over Radar Gap Areas, Shayesteh E. Mahani, Reza Khanbilvardi

Publications and Research

Generating a multi-sensor precipitation product over radar gap area is the objective of the present study. A merging approach is developed to improve Satellite-based Precipitation Estimates (SPE) by merging with ground-based Radar Rainfall (RR) estimates because remote satellites are the only source that can collect information from areas where are inaccessible by ground-based radar and/or rain gauge networks. The merging algorithm is capable of extending radar information from pixels with available RR to their neighboring pixels with no radar information by merging RR with SPE, which is, usually, available for all pixels. SPE is combined with RR using the weighting-based …


Multiple Radar Data Merging In Hydro-Nexrad, Witold F. Krajewski, Bong Chul Seo, Anton Kruger, Piotr Domaszczynski, Gabriele Villarini, James A. Smith Dec 2008

Multiple Radar Data Merging In Hydro-Nexrad, Witold F. Krajewski, Bong Chul Seo, Anton Kruger, Piotr Domaszczynski, Gabriele Villarini, James A. Smith

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

The Hydro-NEXRAD merging algorithms include two options: (1) data-based merging; and (2) product-based merging. Data-based merging algorithm takes volume scan reflectivity data from all radars involved through preprocessing algorithm that performs volume data quality control, interpolates data to synchronize temporal scale between individual radars, and finally combines data onto a common geographic grid. Reflectivity values for a given location are assigned by a weighting function with respect to the distance from the radar. This single reflectivity field is then converted to rainfall amounts using a user-requested standard approach. In product-based merging algorithm reflectivity data from multiple radars are all converted …