Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Seismic Behavior Of Composite Bridge Columns, Mohanad M. Abdulazeez Jan 2020

Seismic Behavior Of Composite Bridge Columns, Mohanad M. Abdulazeez

Doctoral Dissertations

“This study investigates experimentally and numerically the seismic behavior of large-scale hollow-core fiber-reinforced polymer-concrete-steel (HC-FCS) innovative bridge columns as a sustainable approach to endure and rapidly recover from natural disasters such as earthquakes. The HC-FCS column consisted of a concrete shell sandwiched between an outer fiber-reinforced polymer (GFRP) tube and an inner steel tube to provided continuous confinement for the concrete shell along with the height of the column. The columns have a slender inner steel tube with diameter-to-thickness (Ds/ts) ratios ranged between 85 to 254. Each steel tube was embedded into the footing, while the …


Structural Design Of Hollow Extruded Wpc Sheet Piling, Melissa Kahl Jan 2006

Structural Design Of Hollow Extruded Wpc Sheet Piling, Melissa Kahl

Electronic Theses and Dissertations

In marine environments, materials are exposed to a number of harsh environmental factors. Traditional retaining wall materials experience severe degradation as a response to these factors. To address these degradation issues, wood plastic composite (WPC) materials can be used in marine sheet pile applications. WPC materials are both lightweight and durable. This research focuses on developing a sheet pile design that utilizes the material benefits of extruded wood plastic composites with a voided z section sheet pile geometry. The objectives are to develop a more efficient structural design in terms of both material and geometry as compared to the polyvinylchloride …


Damage Mechanics Of Composite Materials Using Fabric Tensors, Ziad N. Taqieddin Jan 2005

Damage Mechanics Of Composite Materials Using Fabric Tensors, Ziad N. Taqieddin

LSU Master's Theses

The major objective of this work is to relate continuum damage mechanics introduced through the concept of fabric tensors to composite materials within the framework of classical elasticity theory. A model of directional data-damage mechanics for composite materials is formulated using fabric tensors. In addition, a general hypothesis for damage mechanics is postulated. It is seen that the two available hypotheses of elastic strain equivalence and elastic energy equivalence may be obtained as special cases of the postulated general hypothesis. This general hypothesis is then used to derive the sought relationship between the damage tensor for composite materials and the …


Fatigue And Fracture Of The Frp-Wood Interface: Experimental Characterization And Performance Limits, Yong Hong Jan 2003

Fatigue And Fracture Of The Frp-Wood Interface: Experimental Characterization And Performance Limits, Yong Hong

Electronic Theses and Dissertations

A performance-based material evaluation methodology was developed to qualify FRP composite reinforcement bonded to glulam structural members for highway bridge applications. The objectives of this thesis are: a) to implement and correlate two methods to evaluate the fatigue and fracture performance of FRP-wood interfaces with associated performance limits; and b) to provide data and recommendations necessary to develop performance-based material specifications. The first method is based on evaluating the apparent shear strength in a single-lap shear test by fatigue tension loading. The second method is based on evaluating the interface fracture toughness in Mode I or opening-mode using fracture mechanics. …


The Effect Of Cutout Dimensionality On The Collapse Characteristics Of Cylindrical Composite Shells Of Varying Thickness, John C. Del Barga Dec 1993

The Effect Of Cutout Dimensionality On The Collapse Characteristics Of Cylindrical Composite Shells Of Varying Thickness, John C. Del Barga

Theses and Dissertations

This study involved a numerical and experimental investigation of the (geometric instability of graphite/epoxy cylindrical panels with free vertical edges undergoing axial compression. Symmetric quasi-isotropic laminates with five different size centralized cutouts, were investigated for two axial lengths of panels and three thicknesses. The study compared experimental data to results from SHELL, a geometrically nonlinear finite-element program which incorporates a parabolic transverse shear strain distribution through the thickness. The research verified that the SHELL program will provide good predictions of the collapse characteristics of a panel with large cutouts of varying dimensions undergoing large displacements and rotations. The best correlation …