Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Theses/Dissertations

2022

Institution
Keyword
Publication

Articles 31 - 60 of 63

Full-Text Articles in Engineering

Improved Performance Of Silica-Supported La0.5Ba0.5Feo3 In The Reverse Water Gas Shift - Chemical Looping Process For Carbon Dioxide Reduction – A Density Functional Theory Study, Jiawei Guo Jun 2022

Improved Performance Of Silica-Supported La0.5Ba0.5Feo3 In The Reverse Water Gas Shift - Chemical Looping Process For Carbon Dioxide Reduction – A Density Functional Theory Study, Jiawei Guo

USF Tampa Graduate Theses and Dissertations

Global warming is increasingly obvious, and the reduction of greenhouse gases is an effective way to heal. Increasing the efficiency of catalysts that is applied in the industry can significantly reduce the emission of greenhouse gases. Reverse water gas shift chemical looping (RWGS-CL) is a promising reaction to convert CO2 to CO. La0.5Ba0.5FeO3 (LBF) is a good candidate for RWGS-CL, which shows increased conversion yield when supported on silica. This research focuses on identifying the mechanism of RWGS-CL via silica-supported LBF by exploring the oxygen vacancy formation energy (EO-vac). Density Functional Theory (DFT) is a powerful computational method to solve …


Atmospheric Mercury Chemistry: Detection, Kinetics, And Mechanism, Na Mao May 2022

Atmospheric Mercury Chemistry: Detection, Kinetics, And Mechanism, Na Mao

Dissertations

The presence of mercury in the environment is of global concern due to its toxicity. The atmosphere is an important transient reservoir for mercury released by human activities and natural sources. The knowledge of atmospheric mercury chemistry is critical for understanding the global biogeochemical cycle. In the atmosphere, mercury primarily exists in three forms: gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (PBM). Over the last decade, the existing knowledge of mercury cycle has dramatically changed: (1) There has been increasing evidence that current detection methods do not accurately quantify gaseous oxidized mercury and a technique which …


A Modular Synthesis Of Processable And Thermally Stable Semi-Fluorinated Aryl Ether Polymers Via Step-Growth Polymerization Of Fluoroalkenes, Ketki Eknath Shelar May 2022

A Modular Synthesis Of Processable And Thermally Stable Semi-Fluorinated Aryl Ether Polymers Via Step-Growth Polymerization Of Fluoroalkenes, Ketki Eknath Shelar

Theses and Dissertations

Tailored fluoropolymers remain the leading choice for a wide variety of advanced high-performance applications, including electronic/optical and energy conversion, owing to their unique blend of complementary high-performance properties. Amorphous semi-fluorinated polymers exhibit improved solubility and melt processability when compared to traditional perfluoropolymers. A leading class of semi-fluorinated aryl ether polymers includes perfluorocyclobutyl (PFCB), perfluorocycloalkenyl (PFCA), and fluoroarylene vinylene ether (FAVE) polymers. Monomers containing aromatic trifluorovinyl ethers (TFVE) are used to synthesize PFCB polymers via radical-mediated [2+2] cyclodimerization. On the other hand, FAVE and PFCA polymers are polymerized via base-mediated nucleophilic addition/elimination of bisphenols with TFVE monomers and decafluorocyclohexene respectively. The …


Rational Design Of Composite Nanomaterials For Water Treatment Applications, Mariana Marcos-Hernandez May 2022

Rational Design Of Composite Nanomaterials For Water Treatment Applications, Mariana Marcos-Hernandez

Open Access Theses & Dissertations

Water quantity and quality have been affected in communities all around the world due to population growth, pollution, changes in land use, and climate change. In order to cope with existing and anticipated water demands and shortages, the use of treated or reclaimed water is an ongoing alternative that has helped communities all over the world address this problem. The adaptation of nanotechnology to traditional water and wastewater treatment processes offers new opportunities in technological developments. Unique size-dependent properties such as: high surface to mass ratio, high reactivity, high sorption capacities, fast dissolution, superparamagnetism, among others, provide high-tech efficient materials …


Chiral Mesogen-Free Liquid Crystalline Polyethers With Sulfonylated Side Chains And Patchy Brush Nanoparticles, Caleb A. Bohannon May 2022

Chiral Mesogen-Free Liquid Crystalline Polyethers With Sulfonylated Side Chains And Patchy Brush Nanoparticles, Caleb A. Bohannon

Doctoral Dissertations

Ferroelectric liquid crystalline polymers (LCPs) hold promise for various applications driven by low electric fields, e.g., electrocaloric materials, because of the higher molecular motion in the liquid crystalline (LC) state. However, traditional chiral smectic C (SmC*) LCPs exhibit small spontaneous polarizations due to the bulky aromatic mesogens and weak polar groups. This dissertation research is focused on the design of mesogen-free sulfonylated LCPs with a goal of seeking the ferroelectric SmC* phase. Such LCPs are expected to exhibit high polarizations owing to the sulfonyl’s large dipole moment. A series of poly(oxypropylene)s (POPs), with chirality being introduced into either the backbone …


Study Of The Chemical Fabrication Process Of Nsom Probes And The Modification Of The Probe Surface, Muhammad Nazmul Hussain May 2022

Study Of The Chemical Fabrication Process Of Nsom Probes And The Modification Of The Probe Surface, Muhammad Nazmul Hussain

Theses and Dissertations

Near-field scanning optical microscopy (NSOM) merges scanning probe technology with the power of high-resolution optical microscopy and provides a natural view into the nanoworld. NSOM requires tapered probes with subwavelength optical apertures and wide cone angles to efficiently channel the illumination light to the tip apex so that it can acquire optical images beyond the diffraction limit. Tapered probes with a range of cone angles can be fabricated through chemical etching of optical fibers using hydrofluoric acid (HF) by varying the etching time. Apart from their use for NSOM imaging, such optical probes can also be transformed into nanosensors by …


Diffusion Of A Salt In An Aqueous Media, Aldaly Pineda Hernandez May 2022

Diffusion Of A Salt In An Aqueous Media, Aldaly Pineda Hernandez

Chemical Engineering Undergraduate Honors Theses

Diffusion is defined as the net transfer of a molecule from a high concentration region to a low concentration region. The concept of diffusion is used in a very important process called "desalination." Desalination is a separation process used to reduce the salt content dissolved in brackish water to make it suitable for human consumption, irrigation, and industrial use.

In desalination plants, it is important to monitor the constantly changing salt content of water, partly due to the diffusive effect. The main purpose of this experiment was to study the diffusion of NaCl in water at two NaCl concentrations. The …


Extractive Membranes For The Detection And Screening Of Waterborne Plutonium, James Foster May 2022

Extractive Membranes For The Detection And Screening Of Waterborne Plutonium, James Foster

All Dissertations

The development of rapid screening tools for special nuclear materials remains a crucial focus for nonproliferation efforts. Traditional approaches for the analysis of trace-level Pu isotopes in water requires tedious and time-consuming sample preparation steps that do not lend well to expeditious screening. Therefore, a novel analytical method that combines both Pu concentration and source preparation into a single detection system would make for an invaluable tool for nuclear security applications. Extractive membranes absorbers can help to fulfill this role as they are capable of concentrating Pu to detectable limits while subsequently serving as alpha spectrometry sample sources. In Chapter …


Synthesis And Molecular Processes Governing Self-Healing Polymeric Materials, Siyang Wang May 2022

Synthesis And Molecular Processes Governing Self-Healing Polymeric Materials, Siyang Wang

All Dissertations

Self-healing polymers capable of recovering from physical damages are promising materials for advanced technologies. In these studies, we developed routes to achieve self-healable properties in acrylic-based copolymers that rely on non-covalent dipolar interactions present in essentially all polymeric materials. Using a combination of spectroscopic tools, thermo-mechanical analysis, and molecular dynamic (MD) simulations, these studies have shown that dipolar interactions lead to conformational changes of macromolecular segments which, in turn, result in self-healing without external intervention. This dissertation also describes the development of novel self-healable acrylic-based covalent adaptable networks (CANs) that combine reprocessing and self-healing properties. The utilization of dipolar interactions …


Structural, Charge Transport, Gas Sensing, Magnetic, Pseudocapacitive, And Electrocatalytic Properties Of Perovskite Oxides., Surendra Bahadur Karki May 2022

Structural, Charge Transport, Gas Sensing, Magnetic, Pseudocapacitive, And Electrocatalytic Properties Of Perovskite Oxides., Surendra Bahadur Karki

Electronic Theses and Dissertations

Perovskites are functional materials with the general formula ABO3 (A = alkali, alkaline earth or lanthanoid cations and B = transition metal or main group cations). These materials are marked by a variety of crystal structures and interesting properties such as colossal magnetoresistance, ferroelectricity, multiferroicity, superconductivity, pseudocapacitance, gas sensing, charge transport, and electrocatalytic properties. The formula of perovskite can be written as AA’BB’O6, when there is ordering between two cations over A and B-sites. Such compounds are called double perovskite oxides. Some amount of oxygen could be lost from crystal structure without decomposition of the phase. Such …


Design & Analysis Of Mixed-Mode Integrated Circuit For Pulse-Shape Discrimination, Bryan Orabutt May 2022

Design & Analysis Of Mixed-Mode Integrated Circuit For Pulse-Shape Discrimination, Bryan Orabutt

McKelvey School of Engineering Theses & Dissertations

In nuclear science experiments it is usually necessary to determine the type of radiation, its energy and direction with considerable accuracy. The detection of neutrons and discriminating them from gamma rays is particularly difficult. A popular method of doing so is to measure characteristics intrinsic to the pulse shape of each radiation type in order to perform pulse-shape discrimination (PSD).

Historically, PSD capable systems have been designed with two approaches in mind: specialized analog circuitry, or digital signal processing (DSP). In this work we propose a PSD capable circuit topology using techniques from both the analog and DSP domains. We …


Surface-Functionalized Chemiresistive Films That Exploit H-Bonding, Cation-Pi, And Metal-Halide Interactions., Prasadanie Karunarathna Adhihetty May 2022

Surface-Functionalized Chemiresistive Films That Exploit H-Bonding, Cation-Pi, And Metal-Halide Interactions., Prasadanie Karunarathna Adhihetty

Electronic Theses and Dissertations

The development of gas sensors for detection of volatile organic compounds (VOCs) has been of interest in the sensing field for decades. To date, the use of metal nanoparticle-based chemiresistors for trace VOC detection, particularly gold nanoparticle-based sensors, is of great interest due to their high chemical stability, ease of synthesis, unique optical properties, large surface to volume ratio, and high level of conductivity. Much effort has been devoted towards gold monolayer protected clusters (Au MPCs) as chemiresistors to detect harmful VOCs. The present thesis documents the results of our efforts to exploit the advantages of functionalized Au MPCs chemiresistors …


Simplified Synthesis Of Conjugated Polymers Enabled Via 1,4-Dihydropyrrolo[3,2-B]Pyrrole, Kenneth-John Jack Bell Apr 2022

Simplified Synthesis Of Conjugated Polymers Enabled Via 1,4-Dihydropyrrolo[3,2-B]Pyrrole, Kenneth-John Jack Bell

Master of Science in Chemical Sciences Theses

Conjugated polymers have attracted significant attention as the active layer material in organic electronics, such as organic photovoltaics and light-emitting diodes, partly due to the ability to influence a broad range of properties through structural design motifs. However, high performance conjugated polymers suffer from numerous synthetic steps, generation of toxic waste, and harsh reaction conditions all of which impart additional costs that inhibit their widespread utilization. Therefore, an emphasis on reducing synthetic complexity and utilizing abundant, commercially available starting materials is needed for organic electronics to reach their full potential. Dihydropyrrolo[3,2-b]pyrrole (H2DPP) chromophores offer a simple one-pot synthesis …


Block Copolymer Directed Self-Assembly: Exploring The Efficacy Of Applications In Semiconductor Fabrication, Jakin Bryce Delony Apr 2022

Block Copolymer Directed Self-Assembly: Exploring The Efficacy Of Applications In Semiconductor Fabrication, Jakin Bryce Delony

USF Tampa Graduate Theses and Dissertations

Over the course of the past 80 years, semiconductor devices have become increasingly ubiquitous in everyday life.From constructing mainframes that encompassed entire rooms during the 1940s, to inventing personal computers in the 1980s, to developing progressively faster smartphones and wearable technology in the 2010s, the primary driving force behind the Digital Revolution has been increasing transistor counts, and thus computing power, via incremental improvements in optical lithography. In 1965, Intel co-founder Gordon Moore boldly predicted that the transistor density of semiconductor devices would double approximately every 18-24 months. While this prediction -- now colloquially referred to as Moore's Law -- …


Synthesis Of Thiol-Acrylate Hydrogels For 3d Cell Culture And Microfluidic Applications, Anowar Hossain Khan Mar 2022

Synthesis Of Thiol-Acrylate Hydrogels For 3d Cell Culture And Microfluidic Applications, Anowar Hossain Khan

LSU Doctoral Dissertations

Globally cell culture is an $18.98 billion industry as of 2020, with an 11.6 percent annual growth rate. Drug discovery has an estimated worth of $69.8 billion in 2020 and is predicted to grow to $110.4 billion by 2025. Three-dimensional (3D) cell culture of cancer cells is one of the rapidly growing felids since it better recapitulates in vivo conditions compared to two-dimensional (2D) models. However, it is challenging to grow 3D tumor spheroids outside the body, and some of the existing technology can generate these spheroids outside the human body but poorly mimic in vivo tumor models. Therefore, there …


Computational Study Of The Reactions Of Heteroatomic Compounds On Ceo2, Suman Bhasker Ranganath Mar 2022

Computational Study Of The Reactions Of Heteroatomic Compounds On Ceo2, Suman Bhasker Ranganath

LSU Doctoral Dissertations

The mechanisms of ambient-temperature reactions of heteroatomic compounds catalyzed by ceria (CeO2), an archetypical reducible oxide, for enzyme mimetics, environmental protection, and chemical synthesis are investigated in this dissertation using theoretical methods. CeO2 is modeled with thermodynamically stable low-index surfaces exposed by commonly studied ceria thin films and nano particles. To understand phosphatase-like dephosphorylation activity, stable adsorption states and surface reactions of model phosphates are examined. Binding of the central P-atom to surface lattice oxygen (Olatt) supplemented by phosphoryl O-Ce interaction is the only stable adsorption state for the un-dissociated molecule. Deprotonation of phosphate monoesters, …


Charged-Particle Interactions To Generate Novel Coatings And Materials, Pradnya D. Rao Feb 2022

Charged-Particle Interactions To Generate Novel Coatings And Materials, Pradnya D. Rao

Electronic Theses and Dissertations

A typical paper coating formulation contains anionically charged pigments and latex to provide a high-quality surface for printing. However, during application and drying, the latex can migrate to the surface or deep into the paper, resulting in weak coating layers or the need to use a high latex content to obtain the same strength properties. In this thesis, we have explored the introduction of cationically charged particles into the suspension as a way to reduce the amount of binder in the coatings, improve coating strength and reduce binder migration. With these aims in mind, we have generated cationic precipitated calcium …


Efficient Capture Of Co2 And Its Selective Reduction To Formic Acid Using Tin-Based Nanomaterials, Emmanuel Oluwaseun Abdul Feb 2022

Efficient Capture Of Co2 And Its Selective Reduction To Formic Acid Using Tin-Based Nanomaterials, Emmanuel Oluwaseun Abdul

Dissertations and Theses

CO2 emissions from the combustion of fossil fuels and other anthropogenic sources have become the main contributing factors to global warming. Chemical methods of absorbing/capturing CO2 from combustion flue gases have made it a sought-after approach in engineering emission solutions because of its simplistic and convenient operation and high absorption efficiency. The conversion of CO2 into renewable fuels and high energy density chemicals by clean and economic processes has drawn scientists' attention over the decades. The electrocatalytic conversion of CO2 using Sn-based materials has been demonstrated to be a promising method for producing formate, an important …


Design And Fabrication Of Nanostructured Electrodes For Complementary Electrochemical And Photoelectrochemical Water Splitting, Kholoud El Sayed Abousalem Jan 2022

Design And Fabrication Of Nanostructured Electrodes For Complementary Electrochemical And Photoelectrochemical Water Splitting, Kholoud El Sayed Abousalem

Theses and Dissertations

Designing highly active, durable, and nonprecious electrodes for overall water splitting is of urgent scientific importance to realize sustainable hydrogen production. Accordingly, the need to search efficient energy production systems is of crucial necessity. In this thesis, two various systems for sustainable hydrogen production have been reported using electrochemical and photoelectrochemical pathways. In the first part of the thesis, electrochemical water splitting involving both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) has been established. To this end, an innovative approach is demonstrated to synthesize flower-like 3D homogenous trimetallic Mn, Ni, Co phosphide catalysts directly on nickel foam via …


Materials And Methodologies For Spectroscopic And Optical Analytical Applications In Cultural Heritage Conservation Science, Lyndsay Nichole Kissell Jan 2022

Materials And Methodologies For Spectroscopic And Optical Analytical Applications In Cultural Heritage Conservation Science, Lyndsay Nichole Kissell

Dissertations and Theses

The field of conservation science falls in the intersection of science and art. The work of conservation scientists may include any single subdiscipline of chemistry, though it is most commonly a highly interdisciplinary field taking skills from analytical, organic, and inorganic chemistry, as well as surface and materials science. The aims of conservation scientists are to answer questions about the production and aging of material cultural heritage. Knowing the materials used by an artist can lead to insight about the intentions of the object and knowing how those materials degrade will enable the use of preventative measures to ensure the …


Scale-Up Of Flow-Electrode Capacitive Deionization Method For Hard Water Softening, Noah Henry Jan 2022

Scale-Up Of Flow-Electrode Capacitive Deionization Method For Hard Water Softening, Noah Henry

Williams Honors College, Honors Research Projects

This study’s purpose is to further document a capacitive deionization design that could be capable of purifying H2O at a household scale where clean water is otherwise unobtainable in applicable regions of the world. The hypothesis behind this study was continuously larger scaled electrochemical cell-units would increase their water softening capabilities in sustainable fashion. The trend at which performance will scale is currently unknown. The units studied were constructed using graphite plates, anion exchange membranes, cation exchange membranes, and Teflon channels. Three streams, two being CaCl2 solutions in DI H2O (one being concentrated with CaCl …


Reinforcement Of Elastomers By Reactive Ionic Surfactant, Nicole Vickerman Jan 2022

Reinforcement Of Elastomers By Reactive Ionic Surfactant, Nicole Vickerman

Williams Honors College, Honors Research Projects

Elastomers without cross-linking agents or fillers do not have the necessary properties for practical applications in the rubber industry. Elastomers must be reinforced with fillers and/or cross-linking agents to achieve the needs of physical and mechanical properties for commercial products. Sodium octyl 6-mercaptohexyl phosphate (SOMP) and sodium ethyl (6-mercaptohexyl) phosphate (SEMP) were used to investigate the influence of a reactive ionic surfactant and its influence on the physical properties of peroxide crosslinked styrene butadiene rubber (SBR). SEMP and SOMP were both found to be able to be grafted successfully on to the SBR chains within the rubber using extraction testing …


Electrochemical Gelation Of Metal Chalcogenide Quantum Dots, Chathuranga Chinthana Hewa Rahinduwage Jan 2022

Electrochemical Gelation Of Metal Chalcogenide Quantum Dots, Chathuranga Chinthana Hewa Rahinduwage

Wayne State University Dissertations

Quantum dots (QDs) are attractive because of their unique size-dependent optical and electronic properties and high surface area. They are tested in research for diverse applications, including energy conversion, catalysis, and sensing. Assembling QDs into functional solid-state devices while preserving their attractive properties is a challenge. Methods currently under the research are not effective in directly fabricating QDs onto devices, making large area assemblies, maintaining the high surface area by forming 3D porous structures, and conducting electricity for applications such as sensing. QD gels are an example of QD assemblies that consist of a 3D porous interconnected QD network. They …


Molten Salt Technologies For Advanced Nuclear Fuel Cycles And Molten Salt Reactors, Dimitris Killinger Jan 2022

Molten Salt Technologies For Advanced Nuclear Fuel Cycles And Molten Salt Reactors, Dimitris Killinger

Theses and Dissertations

This dissertation provides five topics—an assessment of different monitoring and analytical techniques often cited in the literature for molten salt systems and designs for nuclear engineering applications. First, we explored commonly used materials for quasi-reference electrodes in molten chloride salts. Second, the limitations of the electrochemical analysis known as cyclic voltammetry due to the concentration of uranium(III) present were being investigated. Third, we provided an experimental assessment on the development of a spectroelectrochemical cell for interrogating various spectroelectrochemical techniques, namely chronoabsorptometry and chronofluorometry, and their limitations due to the presence of uranium(III) ions. Fourth, a study on the corrosion resistance …


Uio-Type Metal-Organic Framework Derivatives As Sorbents For The Detection Of Gas-Phase Explosives, Matthew Ryan Sherrill Jan 2022

Uio-Type Metal-Organic Framework Derivatives As Sorbents For The Detection Of Gas-Phase Explosives, Matthew Ryan Sherrill

Legacy Theses & Dissertations (2009 - 2024)

The detection of energetic compounds – better known to the public as explosives – has is an important cornerstone of counterterrorism and homeland security . While significant advances have been achieved for the detection of trace explosives in various matrices such as soil, wastewater, and clothing, the detection of explosives in the gas phase remains challenging due to their infamously low vapor pressures. In this thesis, we leverage the high sensitivity of direct analysis in real-time mass spectrometry (DART-MS) and the microporosity of metal-organic frameworks (MOFs) to adsorb and therefore concentrate explosives from the vapor phase and subsequently detect them …


Electrochemical Impedance Spectroscopy Analysis Of Corrosion Of Reinforcing Steel In Fly Ash Mortar By Means Of Transmission Line Modeling, Padraig Stack Jan 2022

Electrochemical Impedance Spectroscopy Analysis Of Corrosion Of Reinforcing Steel In Fly Ash Mortar By Means Of Transmission Line Modeling, Padraig Stack

Williams Honors College, Honors Research Projects

Electrochemical impedance spectroscopy (EIS) is an important non-destructive tool that allows for a deeper understanding of the electrochemical processes and mechanisms occurring in an electrochemical cell. Equivalent electrical circuits (EECs) are used to model the impedance data into electrical components, such as resistors and capacitors, on a circuit. Current potentiostat offers software packages that can analyze the frequency response, but the software only supports “simple” EEC that can be written as fixed electrical components in some combination of series and parallel. Park and Macdonald propose a transmission line model (TLM) that does not use lumped-element models, instead, the values of …


Photocatalytic Degradation Of Lignin By Supported Silver Nanoparticles, Ning Wei Jan 2022

Photocatalytic Degradation Of Lignin By Supported Silver Nanoparticles, Ning Wei

Theses and Dissertations--Chemical and Materials Engineering

Lignin is the second most abundant form of biomass on earth. The phenolic structure and high carbon to oxygen ratio make lignin an attractive renewable source of fuel and chemicals. However, its recalcitrance and heterogeneous nature prove difficult for decomposing lignin’s polymer structure and separation of the products. This work has focused on the use of low-energy catalytic approaches to overcome these barriers. A mimic of the lignin degrading enzyme laccase, consisting of a copper cluster Cu4Py4I4 modified with AgNO3, was developed to function similarly to the laccase active site. The prepared copper complex solution was found to be active …


Synthesis And Advanced Characterization Of Energy Materials, Erik Sarnello Jan 2022

Synthesis And Advanced Characterization Of Energy Materials, Erik Sarnello

Graduate Research Theses & Dissertations

Catalysts are used in an extremely broad range of systems including everything from biological systems to industrial processes. An ideal catalyst offers robust stability and high activity. This work focuses on the synthesis and characterization of materials that show promise in the field of catalysis. Advanced synchrotron characterization techniques and unique experimental design are highlighted to provide foundation work that will provide the necessary information to aid in designing and fabricating catalytic materials. Supported metal nanoparticle (SMN) catalysts are enormously crucial for many catalytic applications. However, catalyst deactivation, caused by sintering and coke formation, is a ubiquitous problem that significantly …


Characterization Of Nanoparticles Using Inductively-Coupled Plasma Mass Spectrometry, Jabez D. Campbell Jan 2022

Characterization Of Nanoparticles Using Inductively-Coupled Plasma Mass Spectrometry, Jabez D. Campbell

MSU Graduate Theses

Nanomaterials are a relatively new class of materials that have many applications which span a wide host of fields from medical products to consumer products. The possible compositions and forms of nanomaterials are just as varied as the applications. Therefore, a versatile characterization method is needed for researchers and regulators alike to ensure nanomaterials are properly used. Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS) is a functional method that could fill the characterization need in the nanomaterial research field. Using data from both SP-ICP-MS tests and data from literature established characterization methods, the viability of making SP-ICP-MS the standard …


The Photo-Transformation Of Free Methionine In The Presence Of Surrogate And Standard Isolate Dissolved Organic Matter Under Sunlit Irradiation, Benjamin J. Mohrhardt Jan 2022

The Photo-Transformation Of Free Methionine In The Presence Of Surrogate And Standard Isolate Dissolved Organic Matter Under Sunlit Irradiation, Benjamin J. Mohrhardt

Dissertations, Master's Theses and Master's Reports

Sulfur (S)-containing amino acids are key sources of carbon, nitrogen, and sulfur involved in protein synthesis, protein function, and providing energy for microbial growth. Dissolved free and combined methionine is one of two S-containing amino acids incorporated into proteins and has been attributed to their stability and function. The oxidation of methionine has received considerable attention given its ubiquitous presence in most biological systems and has been associated with losses in protein function and pathological disorders. In natural waters, methionine is rapidly and selectively taken up by microorganisms to achieve cellular requirements of carbon, nitrogen, and sulfur. The abiotic transformation …