Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Evaluation Of Biomass As Bio-Additive In 3d Printing, Shuyang Zhang Aug 2023

Evaluation Of Biomass As Bio-Additive In 3d Printing, Shuyang Zhang

Doctoral Dissertations

The petrol-based polymer has been widely applied in current daily life. The end-of-life of polymeric products has drawn environmental concerns. One of the solutions to such issues is to use bio-renewable materials to replace or reduce the use of petrol-based materials. Lignocellulosic materials are one of the potential candidates. Along with the features of 3D printing and the unique properties of biomass, 3D-printed biomass-based materials could be promising in preparing sustainable alternatives.

In this dissertation, lignin and other biomass were applied to various 3D printing techniques for sustainable composites. Stereolithography (SLA) was first used, and the kraft softwood lignin was …


Improving Lignin Recovery From Paper Mill And Biorefinery Waste Streams Via Liquid-Phase Splitting, Carter Fitzgerald Aug 2023

Improving Lignin Recovery From Paper Mill And Biorefinery Waste Streams Via Liquid-Phase Splitting, Carter Fitzgerald

All Dissertations

Lignin is an abundant biopolymer with significant promise due to its aromaticity. It has been targeted as a replacement for a number of petroleum-based products including adhesives, coatings, polyurethane foams, activated carbon, and carbon fibers. However, commercially available bulk lignins are too polydisperse, and contain too many residual metals from the pulping process that are detrimental to the properties of the final product.

The Sequential Liquid-lignin Recovery and Purification (SLRP) process was developed by Michael Lake and John Blackburn, in collaboration with Clemson, with the intention of creating a continuous method for recovering lignin from paper-mill black liquors. Thies and …


Hydrothermal Liquefaction (Htl) Of Lignocellulosic Biomass For Biocrude Production: Reaction Kinetics And Corrosion-Resistance Performance Of Candidate Alloys For Reactors, Haoyu Wang May 2023

Hydrothermal Liquefaction (Htl) Of Lignocellulosic Biomass For Biocrude Production: Reaction Kinetics And Corrosion-Resistance Performance Of Candidate Alloys For Reactors, Haoyu Wang

Electronic Thesis and Dissertation Repository

In recent years, the rapid increase in the demand for clean energy and green chemicals as well as concerns over the supply and environmental impacts associated with fossil. resources have stimulated intensive research on conversion of bioresources, such as lignocellulosic biomass and biowaste, into energy, fuels, chemicals, and materials.

Hydrothermal liquefaction (HTL) is a unique thermochemical conversion process, particularly applicable for the conversion of wet biomass and biowaste feedstocks. Most of the biomass HTL studies are conducted in batch reactor and focus on the effects of catalysts, reaction temperature and time on production efficiency and chemical properties of the products. …


Partially Oxidative Torrefaction Of Woody Biomass Pellets: Burning Behaviour And Emission Analysis, Sajid Riaz, Yasir M. Al-Abdeli, Ibukun Oluwoye Jan 2023

Partially Oxidative Torrefaction Of Woody Biomass Pellets: Burning Behaviour And Emission Analysis, Sajid Riaz, Yasir M. Al-Abdeli, Ibukun Oluwoye

Research outputs 2022 to 2026

Non-conventional torrefaction under partially oxidative conditions is an emerging cost-effective thermochemical pre-treatment method to improve the quality of biomass for energy applications. The literature lacks data on the combustion of biomass torrefied under oxygen-deficient atmosphere with actual reactor conditions (inevitable non-uniformities in the thermal environment). In this work, a dual mode fixed-bed biomass (torrefaction) reactor and combustor was operated on Australian biomass pellets, to torrefy the fuels at 275 °C for 30 min using partially oxidative atmosphere (O2: 5 vol %, balance N2) and then to combust them. Combustion behaviour with a particular focus on gaseous …