Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Fischer–Tropsch: Product Selectivity–The Fingerprint Of Synthetic Fuels, Wilson D. Shafer, Muthu Kumaran Gnanamani, Uschi M. Graham, Jia Yang, Cornelius M. Masuku, Gary Jacobs, Burtron H. Davis Mar 2019

Fischer–Tropsch: Product Selectivity–The Fingerprint Of Synthetic Fuels, Wilson D. Shafer, Muthu Kumaran Gnanamani, Uschi M. Graham, Jia Yang, Cornelius M. Masuku, Gary Jacobs, Burtron H. Davis

Center for Applied Energy Research Faculty and Staff Publications

The bulk of the products that were synthesized from Fischer–Tropsch synthesis (FTS) is a wide range (C1–C70+) of hydrocarbons, primarily straight-chained paraffins. Additional hydrocarbon products, which can also be a majority, are linear olefins, specifically: 1-olefin, trans-2-olefin, and cis-2-olefin. Minor hydrocarbon products can include isomerized hydrocarbons, predominantly methyl-branched paraffin, cyclic hydrocarbons mainly derived from high-temperature FTS and internal olefins. Combined, these products provide 80–95% of the total products (excluding CO2) generated from syngas. A vast number of different oxygenated species, such as aldehydes, ketones, acids, and alcohols, are also embedded in this product range. …


Effect Of Support, Preparations Methods, Ag Promotion And Nc Size On The Activity, Selectivity And Sintering Deactivation Of Supported Co Fischer-Tropsch Catalyst, Mahmood Rahmati Mar 2019

Effect Of Support, Preparations Methods, Ag Promotion And Nc Size On The Activity, Selectivity And Sintering Deactivation Of Supported Co Fischer-Tropsch Catalyst, Mahmood Rahmati

Theses and Dissertations

A series of silver-promoted, 20 wt% cobalt Fischer-Tropsch synthesis (FTS) catalysts supported on an alumina modified with 5 wt% silica were prepared using two methods: traditional incipient wetness impregnation (IWI) and a new solvent-deficient precipitation (SDP) technique. Catalysts containing silver promoter concentrations of 0.3, 0.6, 1.2, and 2.5 wt% were prepared using each of the two methods. Silver improved the reducibility of the cobalt significantly, lowering reduction temperatures by up to 100°C, and increasing the extent of reduction by up to 35%. Further, in both preparation methods, changing the silver loading altered the cobalt dispersion. The smallest Co crystallite size …