Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

General Method To Predict Voltage-Dependent Ionic Conduction In A Solid Electrolyte Coating On Electrodes, Jie Pan, Yang-Tse Cheng, Yue Qi Apr 2015

General Method To Predict Voltage-Dependent Ionic Conduction In A Solid Electrolyte Coating On Electrodes, Jie Pan, Yang-Tse Cheng, Yue Qi

Chemical and Materials Engineering Faculty Publications

Understanding the ionic conduction in solid electrolytes in contact with electrodes is vitally important to many applications, such as lithium ion batteries. The problem is complex because both the internal properties of the materials (e.g., electronic structure) and the characteristics of the externally contacting phases (e.g., voltage of the electrode) affect defect formation and transport. In this paper, we developed a method based on density functional theory to study the physics of defects in a solid electrolyte in equilibrium with an external environment. This method was then applied to predict the ionic conduction in lithium fluoride (LiF), in contact with …


Determination Of Work Functions In The Ta1-XAlXNY/Hfo2 Advanced Gate Stack Using Combinatorial Methodology, Kao-Shuo Chang, Martin Green, Jason Hattrick-Simpers, Ichiro Takeuchi, J. Suehle, O. Celik, S. De Gendt Mar 2015

Determination Of Work Functions In The Ta1-XAlXNY/Hfo2 Advanced Gate Stack Using Combinatorial Methodology, Kao-Shuo Chang, Martin Green, Jason Hattrick-Simpers, Ichiro Takeuchi, J. Suehle, O. Celik, S. De Gendt

Jason R. Hattrick-Simpers

No abstract provided.


Combinatorial Study Of Ni-Ti-Pt Ternary Metal Gate Electrodes On Hfo2 For The Advanced Gate Stack, K.-S. Chang, M. Green, J. Suehle, E. Vogel, H. Xiong, Jason Hattrick-Simpers, I. Takeuchi, O. Famodu, K. Ohmori, P. Ahmet, T. Chikyow, P. Majhi, B.-H. Lee, M. Gardner Mar 2015

Combinatorial Study Of Ni-Ti-Pt Ternary Metal Gate Electrodes On Hfo2 For The Advanced Gate Stack, K.-S. Chang, M. Green, J. Suehle, E. Vogel, H. Xiong, Jason Hattrick-Simpers, I. Takeuchi, O. Famodu, K. Ohmori, P. Ahmet, T. Chikyow, P. Majhi, B.-H. Lee, M. Gardner

Jason R. Hattrick-Simpers

The authors have fabricated combinatorial Ni–Ti–Pt ternary metal gate thin film libraries on HfO2 using magnetron co-sputtering to investigate flatband voltage shift (ΔVfb) , work function (Φm) , and leakage current density (JL) variations. A more negative ΔVfb is observed close to the Ti-rich corner than at the Ni- and Pt-rich corners, implying smaller Φm near the Ti-rich corners and higher Φm near the Ni- and Pt-rich corners. In addition, measured JL values can be explained consistently with the observed Φm variations. Combinatorial methodologies prove to be useful in surveying the large compositional space of ternary alloymetal gate electrode systems.


Extension Of Darby's Model Of A Hydrophylic Gas Fed Porous Electrode, Ralph E. White, M. A. Nicholson, L. G. Kleine, J. Van Zee, R. Darby Mar 2015

Extension Of Darby's Model Of A Hydrophylic Gas Fed Porous Electrode, Ralph E. White, M. A. Nicholson, L. G. Kleine, J. Van Zee, R. Darby

Ralph E. White

A model presented previously by one of the authors (1,2) is reviewed and extended. Aspects of this model which were not previously available in the open literature are considered, and the model is extended to include previously neglected terms in the governing differential equations, fractional reaction orders in the current density-overpotential expression, and mass-transfer coefficients to account for mass-transfer resistance of the reactants to the faces of the porous electrode. The model is used to predict quantities of interest for oxygen reduction in an acidic aqueous solution in a porous carbon electrode.


Mathematical Modeling Of A Nickel-Cadmium Cell: Proton Diffusion In The Nickel Electrode, Pauline De Vidts, Ralph E. White Mar 2015

Mathematical Modeling Of A Nickel-Cadmium Cell: Proton Diffusion In The Nickel Electrode, Pauline De Vidts, Ralph E. White

Ralph E. White

In this paper we present a mathematical model of a sealed nickel-cadmium cell that includes proton diffusion and ohmic drop through the active material in the nickel electrode. The model is used to calculate sensitivity coefficients for various parameters in the model. These calculations show that the discharge voltage of the cell is affected mostly by the kinetics of the nickel reaction. Toward the end of discharge, proton diffusion also becomes important, because the proton diffusion process affects the active material utilization significantly. During charge, the cell voltage is mainly affected by the kinetics of the nickel reaction until the …


Determination Of Transport And Electrochemical Kinetic Parameters Of Bare And Copper-Coated Lani4.27Sn0.24 Electrodes In Alkaline Solution, G. Zheng, Branko N. Popov, Ralph E. White Mar 2015

Determination Of Transport And Electrochemical Kinetic Parameters Of Bare And Copper-Coated Lani4.27Sn0.24 Electrodes In Alkaline Solution, G. Zheng, Branko N. Popov, Ralph E. White

Ralph E. White

Electrochemical properties of bare and copper-coated LaNi4.27Sn0.24 electrodes were investigated in alkaline solution. The exchange current density, polarization resistance, and equilibrium potential were determined as functions of the state of charge in the electrodes. The symmetry factors for bare and copper-coated electrodes were estimated to be 0.53 and 0.52, respectively. By using a constant current discharge technique, the hydrogen diffusion coefficient in bare and coated LaNi4.27Sn0.24 was estimated to be 6.75 × 10–11 cm2/s.


A Simple Model For A Zinc/Bromine Flow Cell And Associated Storage Tanks, G. D. Simpson, Ralph E. White Mar 2015

A Simple Model For A Zinc/Bromine Flow Cell And Associated Storage Tanks, G. D. Simpson, Ralph E. White

Ralph E. White

A simple model for a parallel plate, zinc/bromine flow cell and associated storage tanks is presented and used to make time-dependent predictions for various quantities in the system. The model is based on a previously published algebraic model of the cell at steady-state and time-dependent, first-order differential equations for the storage tanks. The Butler-Volmer equation is used for the electrochemical reactions, and the homogeneous reaction between bromine and bromide is included. The model predictions indicate that the charging operation of a zinc/bromine battery can be significantly improved by using a storage tank with a larger residence time for the bromine …


Application Of Porous Electrode Theory On Metal Hydride Electrodes In Alkaline Solution, G. Zheng, Branko N. Popov, Ralph E. White Mar 2015

Application Of Porous Electrode Theory On Metal Hydride Electrodes In Alkaline Solution, G. Zheng, Branko N. Popov, Ralph E. White

Ralph E. White

Porous electrode theory was applied to estimate the exchange current density, the polarization resistance, and symmetry factor for LaNi4.27Sn0.24 hydride electrode in alkaline solution. The exchange current density, polarization resistance, and symmetry factor were determined from polarization curves which were obtained at low overpotentials.