Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Feasibility Of Cathodic Protection In Grouted Post Tensioned Tendons - Exploratory Model Calculations, Jacob Dharma Bumgardner Nov 2015

Feasibility Of Cathodic Protection In Grouted Post Tensioned Tendons - Exploratory Model Calculations, Jacob Dharma Bumgardner

USF Tampa Graduate Theses and Dissertations

Recent corrosion related failures of grouted post tensioned tendons, even after the introduction of improved grouts, have led to renewed interest in supplemental or backup means of corrosion control for these systems. A finite element model is presented to explore feasibility of impressed current cathodic protection of strand in grouted tendons. The model examines polarization evolution as function of service time and includes consideration of anode placement and size, grout porosity, pore water alkalinity, electrochemical species diffusivity and applied voltage on the polarization efficacy and durability of such a system. The exploratory model projections suggested that, within the context of …


Interplays Of Co2, Subnanometer Metal Clusters, And Tio2: Implications For Catalysis And Co2 Photoreduction, Chi-Ta Yang Sep 2015

Interplays Of Co2, Subnanometer Metal Clusters, And Tio2: Implications For Catalysis And Co2 Photoreduction, Chi-Ta Yang

USF Tampa Graduate Theses and Dissertations

This research is motivated by two significant challenges facing the planet: reducing the emission of CO2 to the atmosphere and production of sustainable fuels by harnessing solar energy. The main objective of this work is the study of promising photocatalysts for CO2 reduction. DFT modeling of CO2, subnanometer Ag&Pt clusters, and anatase TiO2 (101) surface is employed to gain fundamental understanding of the catalytic process, followed by validation using a guided experimental endeavor. The binding mechanism of CO2 on the surface is investigated in detail to gain insights into the catalytic activity and to assist …


An Investigation On The Band Gap And Band Edge Of Semi-Conducting Lanthanum Transition Metal Perovskites For Photocatalytic Applications, Divya Suresh Sep 2015

An Investigation On The Band Gap And Band Edge Of Semi-Conducting Lanthanum Transition Metal Perovskites For Photocatalytic Applications, Divya Suresh

USF Tampa Graduate Theses and Dissertations

For the past few decades, a frenzy of attention has been given towards the development of an assortment of photocatalysts as a solution for various environmental problems. TiO2 is the most widely used photocatalyst. TiO2 is biocompatible, chemically and thermally stable but TiO2 and a vast majority other photocatalysts have large band gaps, and hence they find applicability only in the UV region of the solar spectrum. These large band gap photocatalysts suffer a severe limitation with regard to their overall process efficiency as the UV region contributes to about 3 to 4 % of the solar spectrum in terms …


Applications Of Optical Properties From Nanomaterials For Enhanced Activity Of A Titania Photocatalyst Under Solar Radiation, Jon W. Pickering Sep 2015

Applications Of Optical Properties From Nanomaterials For Enhanced Activity Of A Titania Photocatalyst Under Solar Radiation, Jon W. Pickering

USF Tampa Graduate Theses and Dissertations

In recent years, employing advanced oxidation processes (AOPs) as a means of wastewater remediation has emerged as a promising route towards maintaining a sustainable global water management program. The heterogeneous photocatalytic oxidation process has been of particular interest due to the prospective of utilizing solar radiation as the driving force behind the degradation of pollutants. Of the photocatalyst studied to date, TiO2 remains the most attractive material for environmental applications due to its affordability, stability, biocompatibility and high quantum yield. A key draw back however is roughly only 5% of solar radiation incident on earth can provide the energy required …


Topographical Enhancement Of Cell Adhesion On Poorly Adhesive Materials, Maritza Muniz Maisonet Sep 2015

Topographical Enhancement Of Cell Adhesion On Poorly Adhesive Materials, Maritza Muniz Maisonet

USF Tampa Graduate Theses and Dissertations

The overall thrust of this dissertation is to gain a fundamental understanding of the synergistic effects between surface topography and chemical functionality of poorly adhesive materials on enhancing the adhesion of mouse embryonic fibroblasts. Cellular response to surface topography and chemical functionality have been extensively studied on their own providing valuable information that helps in the design of new and improved biomaterials for tissue engineering applications. However, there is a lack of understanding of the synergistic effect of microscale and nanoscale topography with chemical functionality and the relative impact and contribution of each in modulating cellular behavior. By understanding the …


Metallic Encapsulation For High Temperature (>500 °C) Thermal Energy Storage Applications, Abhinav Bhardwaj Jan 2015

Metallic Encapsulation For High Temperature (>500 °C) Thermal Energy Storage Applications, Abhinav Bhardwaj

USF Tampa Graduate Theses and Dissertations

Deployment of high temperature (>500 °C) thermal energy storage in solar power plants will make solar power more cost competitive and pave the way towards a sustainable future. In this research, a unique metallic encapsulation has been presented for thermal energy storage at high temperatures, capable of operation in aerobic conditions. This goal was achieved by employing low cost materials like carbon steel. The research work presents the unique encapsulation procedure adopted, as well as various coatings evaluated and optimized for corrosion protection. Experimental testing favored the use of 150 μm of nickel on carbon steel for corrosion protection …


Fabrication Of Tissue Precursors Induced By Shape-Changing Hydrogels, Olukemi O. Akintewe Jan 2015

Fabrication Of Tissue Precursors Induced By Shape-Changing Hydrogels, Olukemi O. Akintewe

USF Tampa Graduate Theses and Dissertations

Scaffold based tissue reconstruction inherently limits regenerative capacity due to inflammatory response and limited cell migration. In contrast, scaffold-free methods promise formation of functional tissues with both reduced adverse host reactions and enhanced integration. Cell-sheet engineering is a well-known bottom-up tissue engineering approach that allows the release of intact cell sheet from a temperature responsive polymer such as poly-N-isopropylacrylamide (pNIPAAm). pNIPAAm is an ideal template for culturing cell sheets because it undergoes a sharp volume-phase transition owing to the hydrophilic and hydrophobic interaction around its lower critical solution temperature (LCST) of 32°C, a temperature close to physiological temperature. Compared to …


Additives For Heat Transfer Enhancement In High Temperature Thermal Energy Storage Media: Selection And Characterization, Philip D. Myers Jr. Jan 2015

Additives For Heat Transfer Enhancement In High Temperature Thermal Energy Storage Media: Selection And Characterization, Philip D. Myers Jr.

USF Tampa Graduate Theses and Dissertations

Inorganic salts are very promising as high-temperature heat transfer fluids and thermal storage media in solar thermal power production. The dual-tank molten salt storage system, for example, has been demonstrated to be effective for continuous operation in solar power tower plants. In this particular storage regime, however, much of the thermal storage potential of the salts is ignored. Most inorganic salts are characterized by high heats of fusion, so their use as phase-change materials (PCMs) allows for substantially higher energy storage density than their use as sensible heat storage alone. For instance, use of molten sodium-potassium eutectic salt over a …


Silicone Elastomer-Based Combinatorial Biomaterial Gradients For High Throughput Screening Of Cell-Substrate Interactions, Greeshma Mohan Jan 2015

Silicone Elastomer-Based Combinatorial Biomaterial Gradients For High Throughput Screening Of Cell-Substrate Interactions, Greeshma Mohan

USF Tampa Graduate Theses and Dissertations

Biomaterials have evolved over the years from the passive role of mere biocompatibility to an increasingly active role of presenting instructive cues to elicit precise responses at the molecular and cellular levels. Various characteristics common to synthetic biomaterials in vitro and extracellular matrices in vivo, such as immobilized functional or peptide groups, mechanical stiffness, bulk physical properties and topographical features, are key players that regulate cell response. The dynamics in the cell microenvironment and at the cell adhesive interface trigger a web of cell-material and cell-cell information exchanges that have a profound impact in directing the ultimate cell fate …