Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Engineering

In Situ Ir Spectroscopic Investigation Of Noble Metal Catalysts Related To The Reduction Of Automotive Exhaust Emissions, Zhiyong Wang Dec 2015

In Situ Ir Spectroscopic Investigation Of Noble Metal Catalysts Related To The Reduction Of Automotive Exhaust Emissions, Zhiyong Wang

Theses and Dissertations

The reduction of automotive exhaust emissions has been one of the hottest topics in catalysis community since 1970s. Thanks to the development of three-way catalysts, main auto-exhaust pollutants, such as carbon monoxide, nitrogen oxides and unburned hydrocarbons, can be removed simultaneously. Nowadays, diesel engines and lean-engines become more and more popular due to their high fuel-efficiency and low CO2 emissions. Unfortunately, conventional three-way catalysts are not effective at reducing the NOx emissions from these engines due to the excess oxygen in the exhaust stream. Platinum catalysts were found to be highly active for selective NO reduction with hydrocarbons in excess …


Development Of Highly Active And Stable Hybrid Cathode Catalyst For Pemfcs, Won Suk Jung Dec 2015

Development Of Highly Active And Stable Hybrid Cathode Catalyst For Pemfcs, Won Suk Jung

Theses and Dissertations

Polymer electrolyte membrane fuel cells (PEMFCs) are attractive power sources of the future for a variety of applications including portable electronics, stationary power, and automobile application. However, sluggish cathode kinetics, high Pt cost, and durability issues inhibit the commercialization of PEMFCs. To overcome these drawbacks, research has been focused on alloying Pt with transition metals since alloy catalysts show significantly improved catalytic properties like high activity, selectivity, and durability. However, Pt-alloy catalysts synthesized using the conventional impregnation method exhibit uneven particle size and poor particle distribution resulting in poor performance and/or durability in PEMFCs. In this dissertation, a novel catalyst …


Surface Modification Of Nanodiamond And Its Incorporation In Nanodiamond/Peek Nanocomposites, Zahidul Wahab Dec 2015

Surface Modification Of Nanodiamond And Its Incorporation In Nanodiamond/Peek Nanocomposites, Zahidul Wahab

Theses and Dissertations

The continued miniaturization of electronic device components requires new lightweight polymers with high thermal stability, high thermal conductivity, low electrical conductivity, and low dielectric constant. Composites of nanodiamond (ND) and poly(ether ether ketone) (PEEK) are candidates for these applications due their unique combination of properties. The objectives of this research are to explore new routes for surface functionalization of nanodiamond (ND), develop methods for maximizing dispersion of ND as a nano-scale filler in PEEK, and characterize the effect of dispersed ND on the mechanical, thermal and dielectric properties of ND/PEEK composites. Initial attempts to disperse different kinds of commercially available, …


Preparation And Characterization Of Pt-Ru Bimetallic Catalysts Using Electroless Deposition Methods And Mechanistic Study Of Re And Cs Promoters For Ag-Based, High Selectivity Ethylene Oxide Catalysts, Weijian Diao Dec 2015

Preparation And Characterization Of Pt-Ru Bimetallic Catalysts Using Electroless Deposition Methods And Mechanistic Study Of Re And Cs Promoters For Ag-Based, High Selectivity Ethylene Oxide Catalysts, Weijian Diao

Theses and Dissertations

Pt-Ru bimetallic catalysts are widely used for direct methanol fuel cells, biomass upgrading and hydrocarbon refining and offer unique properties compared to Pt or Ru monometallic catalysts due to ensemble effects, electronic effects, and/or bifunctional effects. To achieve better performance, strong metal-metal interactions and true bimetallic surface are needed. Electroless deposition (ED) methods are used in our laboratory to synthesize such bimetallic catalysts. In this study, two series of Ru@Pt/C (Pt deposited on Ru surfaces) and Pt@Ru/C (Ru deposited on Pt surfaces) catalysts have been synthesized. Characterization data from temperature programmed reduction (TPR), selective chemisorption, X-ray photoelectron spectroscopy (XPS), and …


Impact Of Formulation And Processing Parameters On Mechanical Properties Of Magadiite/Elastomer Composites, Yating Mao Dec 2015

Impact Of Formulation And Processing Parameters On Mechanical Properties Of Magadiite/Elastomer Composites, Yating Mao

Theses and Dissertations

This work seeks a better understanding of mechanical reinforcement and energy dissipation in elastomer composites containing the layered silicate magadiite (MGD, Na2Si14O29·nH2O). We characterized the elastomer’s accessibility into MGD interlayer spaces and studied the factors that influence the composite mechanical properties. We also compare the mechanical reinforcement of MGD with montmorillonite (MMT, a layered aluminosilicate clay mineral), which is widely used as filler in other kinds of nanocomposites. The study explores the grafting chemistry, vulcanization, and reinforcement mechanism in MGD/elastomer composites, which may help us to formulate the platelet/elastomer composites with superior mechanical properties and performance in the future. We …


Development Of Ultra-Low Loading Of Compressive Pt Lattice Cathode Catalyst On Highly Stable Support For Pemfc Automotive Applications, Tianyuan Xie Dec 2015

Development Of Ultra-Low Loading Of Compressive Pt Lattice Cathode Catalyst On Highly Stable Support For Pemfc Automotive Applications, Tianyuan Xie

Theses and Dissertations

The major barriers in the commercialization of the fuel cell technology for automotive applications are the cost and durability of the Pt catalyst and the support stability at high potentials. The U.S. Department of Energy (DOE) targets direct hydrogen fuel cell systems for transportation to meet 65% peak-efficiency, 5,000 hour durability with a mass production cost of $40/kW by 2020. Currently in 2015, the system can be operated at peak energy efficiency of 60% for 3,900 hours with cost of $55/kW. To meet these targets, precious metal loadings must be greatly reduced without altering the catalyst stability. The primary objective …


Supported Group Ib-Pd Bimetallic Catalysts Prepared By Electroless Deposition And Galvanic Displacement For Selective Hydrogenation Of Acetylene, Yunya Zhang Dec 2015

Supported Group Ib-Pd Bimetallic Catalysts Prepared By Electroless Deposition And Galvanic Displacement For Selective Hydrogenation Of Acetylene, Yunya Zhang

Theses and Dissertations

Ethylene is the building block for many chemical intermediates in the petrochemical industry. The current worldwide ethylene production is over 150 million tons per year and demand increases by 3-5% annually. However, ethylene produced from steam cracking of light naptha contains up to 2% acetylene which acts as a poison for the downstream ethylene polymerization catalysts. Selective hydrogenation of acetylene in the ethylene stream using supported Pd catalysts is the industrially preferred method of lowering acetylene to acceptable ppm levels (< 5 ppm). Due to inferior selectivity at high acetylene conversion and the formation of “green oil”, or ethylene/acetylene oligomers, during reaction, small amounts of Group IB metals have been added to improve the performance of current generation catalysts. However, the bimetallic effects of the above additives have not been experimentally confirmed, possibly because the conventional methods of catalyst preparation result in both monometallic and bimetallic particles with varying compositions. This in turn makes it difficult to determine the position of the two metallic components, and bimetallic interactions typically occur only when the two metals form proximal contact instead of separate particles. In this study, a series of Ag- and Au-Pd/SiO2 bimetallic catalysts were prepared by electroless deposition (ED) with incremental and controlled coverages of Ag and Au on Pd. The selectivity of acetylene to ethylene and turnover frequencies of acetylene conversion were enhanced at high coverages of Ag and Au on Pd surfaces due to the transition of acetylene adsorption modes, which was further confirmed by the kinetics of acetylene hydrogenation. The similar performance trends for Ag- and Au-Pd/SiO2 suggest that the bimetallic effect for these catalysts was likely geometric and not electronic in nature. For comparison, a series of reverse Pd-Ag/SiO2 bimetallic catalysts where variable coverages of Pd were deposited onto Ag surfaces was prepared using galvanic displacement (GD) of Ago by Pd2+ to further explore the nature of bimetallic effects for selective acetylene hydrogenation. Unlike for the earlier case for Ag on Pd surfaces using ED, for samples prepared by GD there was considerably diffusion of Pd into the Ag lattice to give greater electronic interactions between these two metals, which limited selectivity of acetylene hydrogenation to form ethylene.


Size-Controlled Large-Diameter And Few-Walled Carbon Nanotube Catalysts For Oxygen Reduction, Xianliang Wang, Qing Li, Hengyu Pan, Ye Lin, Yujie Ke, Haiyang Sheng, Mark T. Swihart, Gang Wu Nov 2015

Size-Controlled Large-Diameter And Few-Walled Carbon Nanotube Catalysts For Oxygen Reduction, Xianliang Wang, Qing Li, Hengyu Pan, Ye Lin, Yujie Ke, Haiyang Sheng, Mark T. Swihart, Gang Wu

Faculty Publications

We demonstrate a new strategy for tuning the size of large-diameter and few-walled nitrogen-doped carbon nanotubes (N-CNTs) from 50 to 150 nm by varying the transition metal (TM = Fe, Co, Ni or Mn) used to catalyze graphitization of dicyandiamide. Fe yielded the largest tubes, followed by Co and Ni, while Mn produced a clot-like carbon morphology. We show that morphology is correlated with electrocatalytic activity for the oxygen reduction reaction (ORR). A clear trend of Fe > Co > Ni > Mn for the ORR catalytic activity was observed, in both alkaline media and more demanding acidic media. The Fe-derived N-CNTs exhibited …


Application Of A Coated Film Catalyst Layer Model To A High Temperature Polymer Electrolyte Membrane Fuel Cell With Low Catalyst Loading Produced By Reactive Spray Deposition Technology, Timothy D. Myles, Siwon Kim, Radenka Maric, William E. Mustain Oct 2015

Application Of A Coated Film Catalyst Layer Model To A High Temperature Polymer Electrolyte Membrane Fuel Cell With Low Catalyst Loading Produced By Reactive Spray Deposition Technology, Timothy D. Myles, Siwon Kim, Radenka Maric, William E. Mustain

Faculty Publications

In this study, a semi-empirical model is presented that correlates to previously obtained experimental overpotential data for a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC). The goal is to reinforce the understanding of the performance of the cell from a modeling perspective. The HT-PEMFC membrane electrode assemblies (MEAs) were constructed utilizing an 85 wt. % phosphoric acid doped Advent TPS® membranes for the electrolyte and gas diffusion electrodes (GDEs) manufactured by Reactive Spray Deposition Technology (RSDT). MEAs with varying ratios of PTFE binder to carbon support material (I/C ratio) were manufactured and their performance at various operating temperatures was …


Optimum 3d Matrix Stiffness For Maintenance Of Cancer Stem Cells Is Dependent On Tissue Origin Of Cancer Cells, Esmaiel Jabbari, Samaneh K. Sarvestani, Leily Daneshian, Seyedsina Moeinzadeh Jul 2015

Optimum 3d Matrix Stiffness For Maintenance Of Cancer Stem Cells Is Dependent On Tissue Origin Of Cancer Cells, Esmaiel Jabbari, Samaneh K. Sarvestani, Leily Daneshian, Seyedsina Moeinzadeh

Faculty Publications

Introduction

The growth and expression of cancer stem cells (CSCs) depend on many factors in the tumor microenvironment. The objective of this work was to investigate the effect of cancer cells’ tissue origin on the optimum matrix stiffness for CSC growth and marker expression in a model polyethylene glycol diacrylate (PEGDA) hydrogel without the interference of other factors in the microenvironment.

Methods

Human MCF7 and MDA-MB-231 breast carcinoma, HCT116 colorectal and AGS gastric carcinoma, and U2OS osteosarcoma cells were used. The cells were encapsulated in PEGDA gels with compressive moduli in the 2-70 kPa range and optimized cell seeding density …


High-Throughput Screening Using Fourier-Transform Infrared Imaging, Erdem Sasmaz, Kathleen Mingle, Jochen A. Lauterbach Jun 2015

High-Throughput Screening Using Fourier-Transform Infrared Imaging, Erdem Sasmaz, Kathleen Mingle, Jochen A. Lauterbach

Faculty Publications

Efficient parallel screening of combinatorial lib­ra ries is one of the most challenging aspects of the high­throughput (HT) heterogeneous catalysis workflow. Today, a number of methods have been used in HT catalyst studies, including various optical, mass­spectrometry, and gas­chromatography techniques. Of these, rapid­scanning Fourier­transform infrared (FTIR) imaging is one of the fastest and most versatile screening techniques. Here, the new design of the 16­channel HT reactor is presented and test results for its accuracy and reproducibility are shown. The performance of the system was evaluated through the oxidation of CO over commercial Pd/Al2O3 and cobalt oxide nanoparticles synthesized with different …


Heat Integration Of An Aniline Production Process To Optimize Cost Savings And Reduce Energy Usage, Dillon Ashby May 2015

Heat Integration Of An Aniline Production Process To Optimize Cost Savings And Reduce Energy Usage, Dillon Ashby

Senior Theses

The purpose of this project was to individually complete a heat integration optimization for my group’s senior design project, a process for the large-scale production of aniline.


Enhancing Grain Boundary Ionic Conductivity In Mixed Ionic–Electronic Conductors, Ye Lin, Shumin Fang, Dong Su, Kyle S. Brinkman, Fanglin Chen Apr 2015

Enhancing Grain Boundary Ionic Conductivity In Mixed Ionic–Electronic Conductors, Ye Lin, Shumin Fang, Dong Su, Kyle S. Brinkman, Fanglin Chen

Faculty Publications

Mixed ionic–electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce0.8Gd0.2O2−δ–CoFe2O4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopant and depletion of oxygen vacancies …


Engineered 3d Microenvironments To Direct Osteogenic Differentiation And Modulate Inflammation, Katherine Elizabeth Rutledge Jan 2015

Engineered 3d Microenvironments To Direct Osteogenic Differentiation And Modulate Inflammation, Katherine Elizabeth Rutledge

Theses and Dissertations

Current methods of treating critical size bone defects (CSDs) include autografts and allografts, however both present major limitations including donor-site morbidity, risk of disease transmission, and immune-rejection. Tissue engineering provides a promising alternative to circumvent these shortcomings through the use of stem cells, three dimensional (3D) scaffolds, and growth factors. Cells receive signals from their microenvironment that determine cell phenotype, and a combination of physical cues and chemical factors is thought to have the most profound influence on stem cell behavior. A major focus of tissue engineering strategies is scaffold design to recapitulate in vivo microenvironmental architecture to direct stem …


Selective Synthesis And Characterization Of Single-Site Hy Zeolite-Supported Rhodium Complexes And Their Use As Catalysts For Ethylene Hydrogenation And Dimerization, Konstantin Khivantsev Jan 2015

Selective Synthesis And Characterization Of Single-Site Hy Zeolite-Supported Rhodium Complexes And Their Use As Catalysts For Ethylene Hydrogenation And Dimerization, Konstantin Khivantsev

Theses and Dissertations

Single-site Rh(CO)2, Rh(C2H4)2 and Rh(NO)2 complexes anchored on various dealuminated HY zeolites can be used as precursors for the selective surface mediated synthesis of well-defined site-isolated Rh(CO)(H)x complexes. DFT calculations and D2 isotope exchange experiments provide strong evidence for the formation of a family of site isolated mononuclear rhodium carbonyl hydride complexes (including the first examples of RhH complexes with undissociated H2 ligands): Rh(CO)(H2), Rh(CO)(H)2, and Rh(CO)(H). The fraction of each individual complex formed varies significantly with the Si/Al ratio of the zeolite and the nature of the precursor used.

HY zeolite-supported mononuclear Rh(CO)2 complexes are remarkably active in ethylene …


Stabilizing Electrochemical Carbon Capture Membrane With Al2O3 Thin-Film Overcoating Synthesized By Chemical Vapor Deposition, Jingjing Tong, Fengzhan Si, Lingling Zhang, Jie Fang, Minfang Han, Kevin Huang Jan 2015

Stabilizing Electrochemical Carbon Capture Membrane With Al2O3 Thin-Film Overcoating Synthesized By Chemical Vapor Deposition, Jingjing Tong, Fengzhan Si, Lingling Zhang, Jie Fang, Minfang Han, Kevin Huang

Faculty Publications

Development of high-efficiency and cost-effective carbon capture technology is a central element of our effort to battle the global warming and climate change. Here we report that the unique high-flux and high-selectivity of electrochemical silver-carbonate dual-phase membranes can be retained for an extended period of operation by overcoating the surfaces of porous silver matrix with a uniform layer of Al2O3 thin-film derived from chemical vapor deposition.