Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 786

Full-Text Articles in Engineering

Preparation And Characterization Of Reactive Composites Combining Boron With Mixed Oxides, Purvam Mehulkumar Gandhi Dec 2020

Preparation And Characterization Of Reactive Composites Combining Boron With Mixed Oxides, Purvam Mehulkumar Gandhi

Theses

Thirteen liquids have been explored as Process Control Agents (PCAs) for high-energy mechanical milling of two metal oxide powders, CuO and Bi2O3, with the practical purpose to reduce the sizes of powder particles and refine their crystal structure. Multiple liquid properties have been considered to analyze their effect on evolution of both particle and crystallite sizes during milling for each oxide. Experimental data were analyzed using the δ-AICc (Akaike Information criterion) correlation function applied to linear relations between liquid properties and powder characteristics. Multiple linear correlation models were ranked based on the highest log-likelihood and the …


Development Of Novel Membranes For Nanocarbon Enhanced Separation With Application In Biofuels And Solvent Recover, Oindrila Gupta Dec 2020

Development Of Novel Membranes For Nanocarbon Enhanced Separation With Application In Biofuels And Solvent Recover, Oindrila Gupta

Dissertations

Pharmaceutical industries historically have had one of the highest amounts of solvent waste generated per unit of drug manufactured. Energy requirements and carbon footprint of current solvent recycling processes tend to be quite high, and the incineration of the solvents for waste disposal produces toxic air emissions. Also, rapidly increasing demand for energy and strict regulation on engine pollutant emissions have necessitated the use of alcohol as carbon-neutral fuels. Thermal distillation is one of the most common methods for the separation of alcohol-water mixtures. However, its application is limited due to energy requirements and high operating costs, and heating to …


Stress-State And Injection-Rate Dependent Damage Processes During The Hydraulic Fracturing Of Granite, Gayani Sasendrika Gunarathna May 2020

Stress-State And Injection-Rate Dependent Damage Processes During The Hydraulic Fracturing Of Granite, Gayani Sasendrika Gunarathna

Dissertations

Hydraulic fracturing is a well-stimulation technique that is employed in field applications, such as enhanced geothermal systems (EGS) and shale oil/gas extraction. This research experimentally investigates the effect of the state of stress and injection rate on the hydraulic fracturing processes. In addition, a displacement discontinuity method (DDM) code, FROCK, is used to model the crack initiation and propagation in a granite specimen under hydraulic fracturing conditions. In order to conduct the experimental work, a test setup capable of applying a triaxial state of stress and water pressure inside pre-fabricated flaws cut in prismatic granite specimens is developed. Additionally, the …


Calculating Elastic Properties Of Confined Simple Fluids, Christopher D. Dobrzanski May 2020

Calculating Elastic Properties Of Confined Simple Fluids, Christopher D. Dobrzanski

Dissertations

Confinement in nanoporous materials is known to affect many properties of the fluids confined within their pores. The elastic properties are no exception. This dissertation begins with an overview of the relevant literature on ways of obtaining elastic properties of confined fluids. It outlines some fundamental gaps in our understanding. The chapters following address some of these gaps in understanding elastic properties of the confined fluid, in particular, how the shape of the confining pore matters, how supercriticality effects the properties, how an equation of state designed for confined fluids can be used to calculate elastic properties, and if an …


Customized Boron And Magnesium-Based Reactive Materials Prepared By High Energy Mechanical Milling, Xinhang Liu Dec 2019

Customized Boron And Magnesium-Based Reactive Materials Prepared By High Energy Mechanical Milling, Xinhang Liu

Dissertations

New reactive materials need to be developed having biocidal combustion products. When ignited, such material can add chemical biocidal effects to the common effects of high temperature and pressure. Biocidal combustion products are capable of deactivating harmful spores or bacteria, which can be released by targets containing biological weapons of mass destruction. Research showed that halogens, especially iodine, are effective as biocidal components of reactive material formulations. Recently, magnesium combustion product MgO is also found to have a biocidal effect. Thus, advanced formulations containing both magnesium and iodine are of interest; such formulations are prepared and investigated here.

Reactive materials …


Effect Of 3d Printed Tablet Shape On Drug Release Profile, Christina Gedeon Dec 2019

Effect Of 3d Printed Tablet Shape On Drug Release Profile, Christina Gedeon

Theses

There is a growing interest in utilizing additive manufacturing (AM) as a manufacturing tool to develop oral tablets for personalized medicine. This ultimate goal in mind, this study explores the feasibility of extrusion-based fused deposition modeling (FDM) to 3D print oral tablets with tunable design to control drug release profile. Tablets are printed using poly(vinyl alcohol) (PVA) loaded with model drugs: acetaminophen and caffeine. Hot melt extrusion (HME) is used to fabricate PVA filaments loaded with acetaminophen and caffeine. These filaments are used to fabricate a range of tablets with varying designs to prepare immediate and delayed release tablets. Thermal …


Impact Of Stirrer Speed And Media Type-Loading On The Breakage Kinetics During Wet Stirred Media Milling Of Griseofulvin, Nathaniel Parker Dec 2019

Impact Of Stirrer Speed And Media Type-Loading On The Breakage Kinetics During Wet Stirred Media Milling Of Griseofulvin, Nathaniel Parker

Theses

The aim of this study is to investigate the impact of stirrer speed (2000-4000 rpm) and bead loading (~20-60%) on the breakage kinetics-energy consumption during milling of griseofulvin, a poorly soluble drug, and compare the performance of crosslinked polystyrene (CPS) beads with that of yttrium-stabilized zirconia (YSZ) beads. Laser diffraction, SEM, viscometry, and XRPD were used for characterization. A microhydrodynamic model was used to interpret the breakage kinetics. An increase in stirrer speed led to faster breakage due to more frequent and forceful CPS bead-bead collisions. Despite causing slight decrease in maximum contact pressure, an increase in CPS bead loading …


Modelling In Vitro Dissolution And Release Of Sumatriptan Succinate From Polyvinylpyrrolidone-Based Microneedles Aided By Iontophoresis, James Paul Ronnander Aug 2019

Modelling In Vitro Dissolution And Release Of Sumatriptan Succinate From Polyvinylpyrrolidone-Based Microneedles Aided By Iontophoresis, James Paul Ronnander

Dissertations

A novel dissolving microneedle array system is developed to investigate permeation of a sumatriptan succinate formulations through the skin aided by iontophoresis. Three formulations consisting of hydrophilic, positively charged drug molecules encapsulated in a water-soluble biologically suitable polymer, polyvinylpyrrolidone (PVP), have been accepted by the U.S. Food and Drug Administration (FDA). The microneedle systems are fabricated with 600 pyramid-shaped needles, each 500 µm tall, on a 0.785-cm2 circular array. In vitro transdermal studies with minipig skin and vertical Franz diffusion cells show > 68% permeation of sumatriptan over a 24-hour period. A combination of microneedle and electrical current density ranging …


Improving Boron For Combustion Applications, Kerri-Lee Annique Chintersingh Aug 2019

Improving Boron For Combustion Applications, Kerri-Lee Annique Chintersingh

Dissertations

Boron has received much attention as a potential additive to explosives and propellants due to its high theoretical gravimetric and volumetric heating values. The challenge, however, is that boron particles tend to agglomerate, have lengthy ignition delays and very low combustion rates. Prior research indicates that boron’s long ignition delays are due to its inhibiting naturally occurring oxide layer, impeding the diffusion of reactants for oxidation. For combustion, current studies report that boron particles have two consecutive stages, but the actual reaction mechanism is poorly understood. Despite many years of relevant research, quantitative combustion data on micron-sized boron particles are …


Analyzing Evolution Of Rare Events Through Social Media Data, Xiaoyu Lu Aug 2019

Analyzing Evolution Of Rare Events Through Social Media Data, Xiaoyu Lu

Dissertations

Recently, some researchers have attempted to find a relationship between the evolution of rare events and temporal-spatial patterns of social media activities. Their studies verify that the relationship exists in both time and spatial domains. However, few of those studies can accurately deduce a time point when social media activities are most highly affected by a rare event because producing an accurate temporal pattern of social media during the evolution of a rare event is very difficult. This work expands the current studies along three directions. Firstly, we focus on the intensity of information volume and propose an innovative clustering …


Roles Of Surfactant And Binary Polymers On Dissolution Enhancement Of Bcs Ii Drugs From Nanocomposites And Amorphous Solid Dispersions, Md Mahbubur Rahman Aug 2019

Roles Of Surfactant And Binary Polymers On Dissolution Enhancement Of Bcs Ii Drugs From Nanocomposites And Amorphous Solid Dispersions, Md Mahbubur Rahman

Dissertations

Drug nanocomposites and amorphous solid dispersions (ASDs) are two major formulation platforms used for the bioavailability enhancement of BCS Class II drugs. The major drawback of nanocomposites is their inability to attain high drug supersaturation during in vitro (<50% relative supersaturation) and in vivo dissolution. On the other hand, formulating an amorphous solid dispersion (ASD) with high drug loading (>20%) that releases drug rapidly, while generating and maintaining high supersaturation over at least three hours is challenging. The goal of this thesis is to develop a fundamental understanding of the impact of anionic surfactants–polymers on in vitro drug release from nanocomposites and ASDs, while addressing the above challenges. To achieve this goal, the following objectives are set: (1) compare griseofulvin …


Enzymatic Biofuel Cells In A Sandwich Geometry With Compressed Carbon Nanotubes/Enzyme Electrodes & Hybrid Patch Applications, Biao Leng Aug 2019

Enzymatic Biofuel Cells In A Sandwich Geometry With Compressed Carbon Nanotubes/Enzyme Electrodes & Hybrid Patch Applications, Biao Leng

Dissertations

Enzymatic biofuel cells (EBFCs) convert the chemical energy of biofuels, such as glucose and methanol, into electrical energy by employing enzymes as catalysts. In contrast to conventional fuel cells, EBFCs have a simple membrane-free fuel cell design due to the high catalytic specificity of the enzymes, but the power densities obtained are lower. Although the primary goal of research on EBFCs has been to develop a sustainable power source that can be directly implanted in the human body to power bio-devices, other applications such as the use of a flexible film or fuel cell patch as a wearable power source …


Electrochemically Reactive Membranes For Efficient Biomass Recovery, Pollutant Degradation And Commercialization, Likun Hua May 2019

Electrochemically Reactive Membranes For Efficient Biomass Recovery, Pollutant Degradation And Commercialization, Likun Hua

Dissertations

Micropollution in natural waters such as rivers and groundwater aquifers is a widespread problem that prevents these potentially potable sources from being used as drinking water. In the United States, approximately two-thirds of the over 1,200 most serious hazardous waste sites in the nation are contaminated with trichloroethylene (TCE), a potentially carcinogenic compound. Other emerging and environmentally persistent organic micropollutants include polyromantic hydrocarbons (PAHs), organophosphate flame retardants, endocrine disrupting compounds (EDCs), pesticides, herbicides, pharmaceuticals and personal care products (PPCPs). Membrane filtration is one of the most efficient separation processes widely used for water treatment and pollutant removal. However, traditional membrane …


Speciation Of Gaseous Oxidized Mercury Molecules Relevant To Atmospheric And Combustion Environments, Francisco J. Guzman May 2019

Speciation Of Gaseous Oxidized Mercury Molecules Relevant To Atmospheric And Combustion Environments, Francisco J. Guzman

Dissertations

Mercury is a pervasive and highly toxic environmental pollutant. Major anthropogenic sources of mercury emissions include artisanal gold mining, cement production, and combustion of coal. These sources release mostly gaseous elemental mercury (GEM), which upon entering the atmosphere can travel long distances before depositing to environmental waters and landforms. The deposition of GEM is relatively slow, but becomes greatly accelerated when GEM is converted to gaseous oxidized mercury (GOM) because the latter has significantly higher water solubility and lower volatility. Modeling GOM deposition requires the knowledge of its molecular identities, which are poorly known because ultra-trace (tens to hundreds part …


N8- Polynitrogen Stabilized On Carbon-Based Supports As Metal-Free Electrocatalyst For Oxygen Reduction Reaction In Fuel Cells, Zhenhua Yao May 2019

N8- Polynitrogen Stabilized On Carbon-Based Supports As Metal-Free Electrocatalyst For Oxygen Reduction Reaction In Fuel Cells, Zhenhua Yao

Dissertations

The sluggish oxygen reduction reaction (ORR) kinetics at the cathode is one of the key factors limiting the performance of polymer electrolyte membrane fuel cell (PEMFC). Platinum-based materials are the most widely studied catalysts for this ORR reaction while their large-scale practical application in fuel cells is hindered due to their scarcity and low stability. Therefore, highly active, low cost and robust non-Pt catalysts are being developed to overcome the drawbacks. Recently, a novel polynitrogen N8- (PN) stabilized on multiwall carbon nanotube (MWNT) was synthesized under ambient condition for the first time by our group and demonstrated high ORR activities. …


The Use Of Electrical Resistance Tomography To Determine The Minimum Agitation Speed For Solids Suspension In Stirred Tank Reactors, Baran Teoman May 2019

The Use Of Electrical Resistance Tomography To Determine The Minimum Agitation Speed For Solids Suspension In Stirred Tank Reactors, Baran Teoman

Theses

Njs, the minimum agitation speed needed to just suspend all the solid particles in a solid-liquid mixture stirred in an agitated vessel, is a critical parameter to properly operate industrial tanks in a large number of industrial operations. As a result, a significant literature on Njs is available. The oldest and the most common method to measure Njs experimentally is that of Zwietering’s (Chem. Eng. Sci., 1958, 8, 244-253), where Njs can be visually obtained by determining when the solids stay at the bottom of the tank for no more than 1-2 seconds before being swept away. Although this has …


Glass Transition Temperature Of Particles For Drug Delivery, Yiqing Yang May 2019

Glass Transition Temperature Of Particles For Drug Delivery, Yiqing Yang

Theses

Drug delivery plays an important role in targeted therapies and nanoparticles which can be used as drug carriers and it’s a frequently researched topic. Poly(lactic-co-glycolic acid) (PLGA), a highly biocompatible polymer, has been used as a drug delivery vehicle in many studies. One of the challenges facing drug delivery particles is the problem of burst release which is when a large amount of the drug is suddenly released from the particle once it is placed in the body. This is generally undesirable as usually a slow and controlled release is preferred. The glass transition temperature has an effect on drug …


The Cooperative Effects Of Channel Length-Bias, Width Asymmetry, Gradient Steepness, And Contact-Guidance On Fibroblasts’ Directional Decision Making, Quang Long Pham Dec 2018

The Cooperative Effects Of Channel Length-Bias, Width Asymmetry, Gradient Steepness, And Contact-Guidance On Fibroblasts’ Directional Decision Making, Quang Long Pham

Dissertations

Cell migration in complex micro-environments, that are similar to tissue pores, is important for predicting locations of tissue nucleation and optimizing scaffold architectures. Firstly, how fibroblast cells - relevant to tissue engineering, affect each other’s directional decisions when encountered with a bifurcation of different channel lengths was investigated. It was found that cell sequence and cell mitosis influence the directional choices that the cells made while chemotaxing. Specifically, the fibroblasts chose to alternate between two possible paths - one longer and the other shorter - at a bifurcation. This finding was counter-intuitive given that the shorter path had a steeper …


Experimental And Numerical Characterization Of Multiphase Subsurface Oil Release, Feng Gao Dec 2018

Experimental And Numerical Characterization Of Multiphase Subsurface Oil Release, Feng Gao

Dissertations

Subsurface oil release is commonly encountered in the natural environment and engineering applications and has received the substantial attention of researchers after the disastrous Deepwater Horizon Blowout oil spill in 2009. The main focus on the present research is to systematically study the hydrodynamics of underwater oil jet under a variety of conditions, including the effect of dispersant and different gas to oil ratios (GOR) by using experimental measurement as well as a Computational Fluid Dynamics (CFD) approach, from which the measured turbulent characteristics (e.g., velocity, turbulent kinetic energy, turbulence dissipation rate, etc.) of underwater oil jet are thoroughly examined …


Overcoming Conventional Modeling Limitations Using Image- Driven Lattice-Boltzmann Method Simulations For Biophysical Applications, Olufemi E. Kadri Dec 2018

Overcoming Conventional Modeling Limitations Using Image- Driven Lattice-Boltzmann Method Simulations For Biophysical Applications, Olufemi E. Kadri

Dissertations

The challenges involved in modeling biological systems are significant and push the boundaries of conventional modeling. This is because biological systems are distinctly complex, and their emergent properties are results of the interplay of numerous components/processes. Unfortunately, conventional modeling approaches are often limited by their inability to capture all these complexities. By using in vivo data derived from biomedical imaging, image-based modeling is able to overcome this limitation.

In this work, a combination of imaging data with the Lattice-Boltzmann Method for computational fluid dynamics (CFD) is applied to tissue engineering and thrombogenesis. Using this approach, some of the unanswered questions …


Interactions Between Polymer Nanoparticles And Blood Plasma Applied To Drug Delivery Systems, Mark Bannon Dec 2018

Interactions Between Polymer Nanoparticles And Blood Plasma Applied To Drug Delivery Systems, Mark Bannon

Theses

Targeted nanoparticle drug delivery has the potential to replace current forms of cancer therapy with previously unparalleled efficiency. Upon introduction into the human body, nanoparticles exhibit a substantial increase in diameter due to a biomolecular corona formation caused by interactions between blood plasma proteins and the nanoparticles. These interactions must be analyzed and understood for targeted delivery to reach its potential in both feasibility and efficiency.

To study the formation of the protein corona, polystyrene nanoparticles were incubated in vitro in goat blood plasma for 10-minute intervals, diluted to different degrees and then measured to obtain the hydrodynamic diameter of …


Mechanochemical Nitration Of Aromatic Compounds, Oleg Shlomo Lagoviyer May 2018

Mechanochemical Nitration Of Aromatic Compounds, Oleg Shlomo Lagoviyer

Theses

Aromatic compounds such as toluene are commercially nitrated using a combination of nitric acid with other strong acids. This process relies on the use of highly corrosive chemicals and generates environmentally harmful waste, which is difficult to handle and dispose of. In this study aromatic nitration using solvent-free mechanochemical processing of environmentally benign precursors has been achieved and investigated. Mononitrotoluene was synthesized by milling toluene with sodium nitrate and molybdenum trioxide as a catalyst. Several parameters affecting the desired product yield and selectivity were identified and varied. MNT yields in excess of 60% have been achieved in different tests. The …


Combustion Of Nanocomposite Thermite Powders, Ian Monk Apr 2018

Combustion Of Nanocomposite Thermite Powders, Ian Monk

Dissertations

This work investigates combustion of nanocomposite thermite powders prepared by arrested reactive milling (ARM). The focus is on how ARM as a top-down approach to nano-thermite building generating fully-dense nanocomposite particles with dimensions of 1-100 µm affects the rates and mechanism of their combustion. A variety of thermites are milled using both aluminum and zirconium as fuels combined with several oxidizers (WoO3, MoO3, CuO, Fe2O3, and Bi2O3). The powders are ignited using both an electrostatic discharge (ESD) and a CO2 laser beam.

A range of parameters vary …


Comparative Analysis Of The Dissolution Performance Of Aspirin Tablets In The Usp Apparatus 2 And In A Minivessel Dissolution System, Annmarie C. Walker Dec 2017

Comparative Analysis Of The Dissolution Performance Of Aspirin Tablets In The Usp Apparatus 2 And In A Minivessel Dissolution System, Annmarie C. Walker

Theses

Dissolution testing is a critical component of quality control procedures in the pharmaceutical industry in order to ensure that the final solid dosage forms have consistent dissolution properties. Dissolution tests are also routinely conducted to evaluate the in-vitro performance of solid dosage forms during pharmaceutical development, to aid in the behavior of formulations, and to optimize drug release from dosage forms.

The use of compendial dissolution test apparatus and techniques, such as the USP 2 (Paddle), to characterize the dissolution performance of oral drug delivery system is an established area of pharmaceutical science. However, this method is not always appropriate, …


Computational And Experimental Determination Of The Mixing Efficiency Of A Microfluidic Serpentine Micromixer, Siril Arockiam Dec 2017

Computational And Experimental Determination Of The Mixing Efficiency Of A Microfluidic Serpentine Micromixer, Siril Arockiam

Theses

In microfluidics, efficiency and mixing time are the greatest disadvantages. These parameters hinder the application of microfluidic devices for biochemical and immunological assays. However, once these disadvantages have been overcome by optimizing the parameters of the microfluidic device, it becomes the important analytical tool. In this experiment, various designs of microfluidic devices have been both simulated using COMSOL software, and experimentally verified to obtain the optimized parameter such as depth and velocity for better mixing efficiency. The COMSOL model has been validated by comparing the results with fluorescent images data of the experiment. The microfluidic device is built with Adhesive …


Formulation And Dissolution Of Polymer Strip Films For The Delivery Of Poorly Water-Soluble Drug Nanoparticles, Scott Matthew Krull Oct 2017

Formulation And Dissolution Of Polymer Strip Films For The Delivery Of Poorly Water-Soluble Drug Nanoparticles, Scott Matthew Krull

Dissertations

Polymer films have emerged as a promising platform for delivery of pharmaceutical products in recent years due to simplified processing, greater flexibility, and improved patient compliance over traditional solid dosage forms. However, the large majority of efforts have focused on incorporation of water-soluble drugs. The objective of this dissertation is to explore the robustness and versatility of the strip film platform for delivery of poorly water-soluble drug nanoparticles to ultimately develop a predictive model for drug release from such films.

The robustness of the polymer strip film platform to successfully deliver a variety of poorly water-soluble drug nanoparticles without the …


Co2 Reduction Over Noble Metal/Carbon Nanotube Catalyst, Yuan Zhu Oct 2017

Co2 Reduction Over Noble Metal/Carbon Nanotube Catalyst, Yuan Zhu

Dissertations

Carbon nanotube-based Pt/Pd and Ru catalysts, independently synthesized by a microwave reaction technique, show good catalytic activity for CO2 reduction in the contexts of dry reforming (DR) of methane (CH4 + CO2 -> 2CO + 2H2) and reverse water gas shift (RWGS) (H2 + CO2 -> CO + H2O). Reaction temperatures range from 773 to 973 K, with system pressure at 30 psig. The feed molar ratios CH4/CO2 and CO2/H2 are varied from 0.5 to 2.0. Reactant conversions in DR and RWGS are strongly influenced by temperature and feed …


Assessment Of Nanocomposites Vs. Amorphous Solid Dispersions For Dissolution Enhancement Of Bcs Class Ii Drugs, Meng Li Oct 2017

Assessment Of Nanocomposites Vs. Amorphous Solid Dispersions For Dissolution Enhancement Of Bcs Class Ii Drugs, Meng Li

Dissertations

Nanoparticle-based formulations (nanocomposites) and amorphous solid dispersions, shortly ASDs, are two major pharmaceutical formulation platforms used for the bioavailability enhancement of poorly water-soluble drugs. While they both have several advantages-disadvantages, a scientific comparative assessment of their drug release performance and dissolution mechanisms at different drug doses is not available. With the goal of addressing this issue, the dissertation aims to achieve three major objectives: (1) develop a processing-formulation understanding of wet media milling process for fast-efficient production of drug nanoparticles in stable nanosuspension form, (2) elucidate the impact of various classes dispersants on drug release rate and mechanisms during the …


Characterization Of Microporous Ectfe Membranes Exposed To Different Liquid Media And ?-Radiation And Nanoparticle Microfiltration Through Such Membranes, Na Yao Oct 2017

Characterization Of Microporous Ectfe Membranes Exposed To Different Liquid Media And ?-Radiation And Nanoparticle Microfiltration Through Such Membranes, Na Yao

Dissertations

Microporous polymeric membranes are used in a variety of applications for separations, purification as well as barrier function. A major application is for microfiltration (MF). Changes in the properties of MF membranes exposed to acids, bases and organic solvents are of interest in semiconductor processing as well as in membrane contactor applications. Microfiltration membranes used for sterilization in beverage, biotechnology and pharmaceutical industries are sterilized by gamma radiation among others. Irradiation-induced degradation in membrane properties should be known. A variety of fluoropolymer-based microporous membranes are available with varying properties. Ethylene chlorotrifluoroethylene (ECTFE) membranes are a new addition and are of …


Investigation Of Nh3 And No Adsorption Over Cu/Sapo-34 And Cu/Aloo3 Catalysts For Nh3–Scr System, Basil Rawah May 2017

Investigation Of Nh3 And No Adsorption Over Cu/Sapo-34 And Cu/Aloo3 Catalysts For Nh3–Scr System, Basil Rawah

Theses

In this study, Copper supported on SAPO-34 molecular sieves or alumina is prepared via an incipient wetness impregnation method for ammonia selective catalytic reduction (NH3-SCR). These NH3-SCR catalysts are characterized by pulse chemisorption, temperature-programmed reduction (TPR), and temperature-programmed desorption (TPD) with three different conditions (NH3, NO, combined NH3-NO) to evaluate the adsorption of ammonia and nitric oxide. Cu/SAPO-34 catalyst has shown higher ammonia adsorption capacity compared to Cu/Al2O3 catalyst. The Cu/SAPO-34 adsorption is enhanced due to the strong acidity and high surface area of SAPO-34 molecular sieves. NO adsorption …