Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Background Differences In Baseline And Stimulated Mmp Levels Influence Abdominal Aortic Aneurysm Susceptibility, Matthew A. Dale, Melissa K. Suh, Shijia Zhao, Trevor Meisinger, Linxia Gu, Vicki J. Swier, Devendra K. Agrawal, Timothy Greiner, Jeffrey S. Carson, B. Timothy Baxter, Wanfen Xiong Dec 2015

Background Differences In Baseline And Stimulated Mmp Levels Influence Abdominal Aortic Aneurysm Susceptibility, Matthew A. Dale, Melissa K. Suh, Shijia Zhao, Trevor Meisinger, Linxia Gu, Vicki J. Swier, Devendra K. Agrawal, Timothy Greiner, Jeffrey S. Carson, B. Timothy Baxter, Wanfen Xiong

Department of Mechanical and Materials Engineering: Faculty Publications

Objective: Evidence has demonstrated profound influence of genetic background on cardiovascular phenotypes. Murine models in Marfan syndrome (MFS) have shown that genetic background-related variations affect thoracic aortic aneurysm formation, rupture, and lifespan of mice. MFS mice with C57Bl/6 genetic background are less susceptible to aneurysm formation compared to the 129/SvEv genetic background. In this study, we hypothesize that susceptibility to abdominal aortic aneurysm (AAA) will be increased in 129/SvEv mice versus C57Bl/6 mice. We tested this hypothesis by assessing differences in aneurysm size, tissue properties, immune response, and MMP expression.

Methods: Mice of C57Bl/6 or 129/SvEv background underwent AAA induction …


Next-Generation Mrna Sequencing Reveals Pyroptosis-Induced Cd4+ T Cell Death In Early Simian Immunodeficiency Virus-Infected Lymphoid Tissues, Wuxun Lu, Andrew J. Demers, Fangrui Ma, Guobin Kang, Zhe Yuan, Yanmin Wan, Yue Li, Jiangqing Xu, Mark Lewis, Qingsheng Li Nov 2015

Next-Generation Mrna Sequencing Reveals Pyroptosis-Induced Cd4+ T Cell Death In Early Simian Immunodeficiency Virus-Infected Lymphoid Tissues, Wuxun Lu, Andrew J. Demers, Fangrui Ma, Guobin Kang, Zhe Yuan, Yanmin Wan, Yue Li, Jiangqing Xu, Mark Lewis, Qingsheng Li

Nebraska Center for Biotechnology: Faculty and Staff Publications

Lymphoid tissues (LTs) are the principal sites where human immunodeficiency virus type 1 (HIV-1) replicates and virus-host interactions take place, resulting in immunopathology in the form of inflammation, immune activation, and CD4+ T cell death. The HIV-1 pathogenesis in LTs has been extensively studied; however, our understanding of the virus-host interactions in the very early stages of infection remains incomplete. We investigated virus-host interactions in the rectal draining lymph nodes (dLNs) of rhesus macaques at different times after intrarectal inoculation (days postinoculation [dpi]) with simian immunodeficiency virus (SIV). At 3 dpi, 103 differentially expressed genes (DEGs) were detected using next-generation …


Thermosensitive Gel Containing Cellulose Acetate Phthalate-Efavirenz Combination Nanoparticles For Prevention Of Hiv-1 Infection, Abhijit A. Date, Annemarie Shibata, Emily Mcmullen, Krista La Bruzzo, Patrick Bruck, Michael Belshan, You Zhou, Christopher J. Destache Jan 2015

Thermosensitive Gel Containing Cellulose Acetate Phthalate-Efavirenz Combination Nanoparticles For Prevention Of Hiv-1 Infection, Abhijit A. Date, Annemarie Shibata, Emily Mcmullen, Krista La Bruzzo, Patrick Bruck, Michael Belshan, You Zhou, Christopher J. Destache

Nebraska Center for Biotechnology: Faculty and Staff Publications

The objective of this investigation was to develop and evaluate a nano-microbicide containing a combination of cellulose acetate phthalate (HIV-1 entry inhibitor) and efavirenz (anti-HIV agent) for HIV prophylaxis. Cellulose acetate phthalate-efavirenz combination nanoparticles (CAP-EFV-NPs) were fabricated by the nanoprecipitation method and were characterized for particle size, zeta potential and encapsulation efficiency of efavirenz. CAP-EFV-NPs were incorporated into a thermosensitive gel (CAP-EFV-NP-Gel). CAP-EFV-NPs, CAP-EFV-NP-Gel and efavirenz solution were evaluated for cytotoxicity to HeLa cells and for in vitro short-term (1-day) and long-term (3-day) prophylaxis against HIV-1 infection in TZM-bl cells. CAP-EFV-NPs had size < 100 nm, negative surface charge and encapsulation efficiency of efavirenz was > 98%. CAP-EFV-NPs and CAP-EFV-NP-Gel were significantly less …