Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biotechnology

2015

Institution
Keyword
Publication
Publication Type

Articles 1 - 25 of 25

Full-Text Articles in Engineering

U.S. Billion-Ton Update: Biomass Supply For A Bioenergy And Bioproducts Industry, Robert D. Perlack, Laurence M. Eaton, Anthony F. Turhollow Jr., Matt H. Langholtz, Craig C. Brandt, Mark E. Downing, Robin L. Graham, Lynn L. Wright, Jacob M. Kavkewitz, Anna M. Shamey, Richard G. Nelson, Bryce J. Stokes, William L. Rooney, David J. Muth Jr., J. Richard Hess, Jared M. Abodeely, Chad Hellwinckel, Danial De La Torre Ugarte, Daniel C. Yoder, James P. Lyon, Timothy G. Rials, Timothy A. Volk, Thomas S. Buchholz, Lawrence P. Abrahamson, Robert P. Anex, Thomas B. Voigt, William Berguson, Don E. Riemenschneider, Douglas Karlen, Jane M. F. Johnson, Robert B. Mitchell, Kenneth P. Vogel, Edward P. Richard Jr., John Tatarko, Larry E. Wagner, Kenneth E. Skog, Patricia K. Lebow, Dennis P. Dykstra, Marilyn A. Buford, Patrick D. Miles, D. Andrew Scott, James H. Perdue, Robert B. Rummer, Jamie Barbour, John A. Stanturf, David B. Mckeever, Ronald S. Zalesny Jr., Edmund A. Gee, P. Daniel Cassidy, David Lightle Dec 2015

U.S. Billion-Ton Update: Biomass Supply For A Bioenergy And Bioproducts Industry, Robert D. Perlack, Laurence M. Eaton, Anthony F. Turhollow Jr., Matt H. Langholtz, Craig C. Brandt, Mark E. Downing, Robin L. Graham, Lynn L. Wright, Jacob M. Kavkewitz, Anna M. Shamey, Richard G. Nelson, Bryce J. Stokes, William L. Rooney, David J. Muth Jr., J. Richard Hess, Jared M. Abodeely, Chad Hellwinckel, Danial De La Torre Ugarte, Daniel C. Yoder, James P. Lyon, Timothy G. Rials, Timothy A. Volk, Thomas S. Buchholz, Lawrence P. Abrahamson, Robert P. Anex, Thomas B. Voigt, William Berguson, Don E. Riemenschneider, Douglas Karlen, Jane M. F. Johnson, Robert B. Mitchell, Kenneth P. Vogel, Edward P. Richard Jr., John Tatarko, Larry E. Wagner, Kenneth E. Skog, Patricia K. Lebow, Dennis P. Dykstra, Marilyn A. Buford, Patrick D. Miles, D. Andrew Scott, James H. Perdue, Robert B. Rummer, Jamie Barbour, John A. Stanturf, David B. Mckeever, Ronald S. Zalesny Jr., Edmund A. Gee, P. Daniel Cassidy, David Lightle

Douglas L Karlen

The Report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of “potential” biomass within the contiguous United States based on numerous assumptions about current and future inventory and production capacity, availability, and technology. In the 2005 BTS, a strategic analysis was undertaken to determine if U.S. agriculture and forest resources have the capability to potentially produce at least one billion dry tons of biomass annually, in a sustainable manner—enough to displace approximately 30% of the country’s present petroleum …


Background Differences In Baseline And Stimulated Mmp Levels Influence Abdominal Aortic Aneurysm Susceptibility, Matthew A. Dale, Melissa K. Suh, Shijia Zhao, Trevor Meisinger, Linxia Gu, Vicki J. Swier, Devendra K. Agrawal, Timothy Greiner, Jeffrey S. Carson, B. Timothy Baxter, Wanfen Xiong Dec 2015

Background Differences In Baseline And Stimulated Mmp Levels Influence Abdominal Aortic Aneurysm Susceptibility, Matthew A. Dale, Melissa K. Suh, Shijia Zhao, Trevor Meisinger, Linxia Gu, Vicki J. Swier, Devendra K. Agrawal, Timothy Greiner, Jeffrey S. Carson, B. Timothy Baxter, Wanfen Xiong

Department of Mechanical and Materials Engineering: Faculty Publications

Objective: Evidence has demonstrated profound influence of genetic background on cardiovascular phenotypes. Murine models in Marfan syndrome (MFS) have shown that genetic background-related variations affect thoracic aortic aneurysm formation, rupture, and lifespan of mice. MFS mice with C57Bl/6 genetic background are less susceptible to aneurysm formation compared to the 129/SvEv genetic background. In this study, we hypothesize that susceptibility to abdominal aortic aneurysm (AAA) will be increased in 129/SvEv mice versus C57Bl/6 mice. We tested this hypothesis by assessing differences in aneurysm size, tissue properties, immune response, and MMP expression.

Methods: Mice of C57Bl/6 or 129/SvEv background underwent AAA induction …


Production And Harvest Of Microalgae In Wastewater Raceways With Resource Recycling, Alexander Colin Roberts Dec 2015

Production And Harvest Of Microalgae In Wastewater Raceways With Resource Recycling, Alexander Colin Roberts

Master's Theses

Microalgae can be grown on municipal wastewater media to both treat the wastewater and produce feedstock for algae biofuel production. However the reliability of treatment must be demonstrated, as well as high areal algae productivity on recycled wastewater media and efficient sedimentation harvesting. This processes was studied at pilot scale in the present research.

A pilot facility was operated with nine CO2-supplemented raceway ponds, each with a 33-m2 surface area and a 0.3-m depth, continuously from March 6, 2013 through September 24, 2014. The ponds were operated as three sets of triplicates with two sets continuously fed …


Biomechanical Performances Of Networked Polyethylene Glycol Diacrylate: Effect Of Photoinitiator Concentration, Temperature, And Incubation Time, Morshed Khandaker, Albert Orock, Stefano Tarantini, Jeremiah White, Ozlem Yasar Dec 2015

Biomechanical Performances Of Networked Polyethylene Glycol Diacrylate: Effect Of Photoinitiator Concentration, Temperature, And Incubation Time, Morshed Khandaker, Albert Orock, Stefano Tarantini, Jeremiah White, Ozlem Yasar

Publications and Research

Nutrient conduit networks can be introduced within the Polyethylene Glycol Diacrylate (PEGDA) tissue construct to enable cells to survive in the scaffold. Nutrient conduit networks can be created on PEGDA by macrochannel to nanochannel fabrication techniques. Such networks can influence the mechanical and cell activities of PEGDA scaffold. There is no study conducted to evaluate the effect of nutrient conduit networks on the maximum tensile stress and cell activities of the tissue scaffold.The study aimed to explore the influence of the network architecture on the maximum tensile stress of PEGDA scaffold and compared with the nonnetworked PEGDA scaffold. Our study …


Next-Generation Mrna Sequencing Reveals Pyroptosis-Induced Cd4+ T Cell Death In Early Simian Immunodeficiency Virus-Infected Lymphoid Tissues, Wuxun Lu, Andrew J. Demers, Fangrui Ma, Guobin Kang, Zhe Yuan, Yanmin Wan, Yue Li, Jiangqing Xu, Mark Lewis, Qingsheng Li Nov 2015

Next-Generation Mrna Sequencing Reveals Pyroptosis-Induced Cd4+ T Cell Death In Early Simian Immunodeficiency Virus-Infected Lymphoid Tissues, Wuxun Lu, Andrew J. Demers, Fangrui Ma, Guobin Kang, Zhe Yuan, Yanmin Wan, Yue Li, Jiangqing Xu, Mark Lewis, Qingsheng Li

Nebraska Center for Biotechnology: Faculty and Staff Publications

Lymphoid tissues (LTs) are the principal sites where human immunodeficiency virus type 1 (HIV-1) replicates and virus-host interactions take place, resulting in immunopathology in the form of inflammation, immune activation, and CD4+ T cell death. The HIV-1 pathogenesis in LTs has been extensively studied; however, our understanding of the virus-host interactions in the very early stages of infection remains incomplete. We investigated virus-host interactions in the rectal draining lymph nodes (dLNs) of rhesus macaques at different times after intrarectal inoculation (days postinoculation [dpi]) with simian immunodeficiency virus (SIV). At 3 dpi, 103 differentially expressed genes (DEGs) were detected using next-generation …


Evaluation Of Effective Operational Cycle Time And Bioprocess Parameters In A Sequential Batch Reactor For Efficient Organic And Nutrient Removal From Domestic Sewage, Sandip S. Magdum, Siva Kumar Varigala, Yogesh N. Patil, Gauri P. Minde, Janardhan B. Bornare, V. Kalyanraman Oct 2015

Evaluation Of Effective Operational Cycle Time And Bioprocess Parameters In A Sequential Batch Reactor For Efficient Organic And Nutrient Removal From Domestic Sewage, Sandip S. Magdum, Siva Kumar Varigala, Yogesh N. Patil, Gauri P. Minde, Janardhan B. Bornare, V. Kalyanraman

Sandip S. Magdum

Anaerobic, anoxic and aerobic environment can be simulated in the single stage sequential batch reactor (SBR) . Various design conditions viz., combinations of different phase time and different cycle time, hydraulic residence time (HRT), substrate loading rate, sludge age (SRT) and aeration time were analyzed for optimum biological treatment. The pilot runs were evaluated with the design conditions of food/microbe ratio (F/M) 0.2 per day and MLSS of 4950 mg/L. For the given design conditions 4, 5 and 6 hours cycle lengths were analyzed for their efficient performance with 30-33% of decant volume for sewage containing C:N:P of 100:8:2. Studies …


Label-Free Surface-Enhanced Raman Spectroscopy-Linked Immunosensor Assay (Slisa) For Environmental Surveillance, Vinay Bhardwaj Oct 2015

Label-Free Surface-Enhanced Raman Spectroscopy-Linked Immunosensor Assay (Slisa) For Environmental Surveillance, Vinay Bhardwaj

FIU Electronic Theses and Dissertations

The contamination of the environment, accidental or intentional, in particular with chemical toxins such as industrial chemicals and chemical warfare agents has increased public fear. There is a critical requirement for the continuous detection of toxins present at very low levels in the environment. Indeed, some ultra-sensitive analytical techniques already exist, for example chromatography and mass spectroscopy, which are approved by the US Environmental Protection Agency for the detection of toxins. However, these techniques are limited to the detection of known toxins. Cellular expression of genomic and proteomic biomarkers in response to toxins allows monitoring of known as well as …


Application Of 3d Printing Technology In Porous Anode Fabrication For Enhanced Power Output Of Microbial Fuel Cells, Bin Bian Sep 2015

Application Of 3d Printing Technology In Porous Anode Fabrication For Enhanced Power Output Of Microbial Fuel Cells, Bin Bian

Electronic Thesis and Dissertation Repository

Microbial fuel cells (MFCs) are widely researched for application in wastewater treatment. However, the current anodes used in MFCs often suffer from high fabrication cost and uncontrollable pore sizes. In this thesis, three-dimensional printing technique was utilized to fabricate anodes with different micro pore sizes for MFCs. Copper coating and carbonization were applied to the printed polymer anodes to increase the conductivity and specific surface area. Voltages of MFCs with various anodes were measured as well as other electrochemical tests such as linear sweep voltammetry and electrochemical impedance spectroscopy. 3D copper porous anode produced higher maximum voltages and power densities …


The Application Of The Ultrafine Technology In Improving The Biocompatibility And Osteo-Inductivity Of Dental Implants, Nicholas Y. Hou Aug 2015

The Application Of The Ultrafine Technology In Improving The Biocompatibility And Osteo-Inductivity Of Dental Implants, Nicholas Y. Hou

Electronic Thesis and Dissertation Repository

Dental implants are very effective medical devices. However, although stable, the conventional titanium implants are not very bioactive which in some instances could reduce their efficacy. This thesis described the research progress of using polymeric ultrafine-particles with bioactive additives to enrich the surface of titanium substrate, thereby increasing the biocompatibility and osteo-inductivity of the biomaterial. During this doctoral project, three different types of polymers were examined, initially the conventional polyester, and later the novel epoxy as well as the epoxy/polyester hybrid polymers. Physical characterizations confirmed that all of the coating powders were ultrafine particles, and homogeneous surfaces were constructed from …


Development Of A Novel Enzymatic Pre-Treatment For Lignocellulosic Biomass, Melissa Robins, Jenna Rickus Aug 2015

Development Of A Novel Enzymatic Pre-Treatment For Lignocellulosic Biomass, Melissa Robins, Jenna Rickus

The Summer Undergraduate Research Fellowship (SURF) Symposium

Biofuels, fuels derived directly from living matter, present a renewable and environmentally friendly alternative to petroleum based fuels. Bioethanol produced from low input energy crops or agricultural waste is a promising fuel source because it does not interfere with the human food supply chain and the ethanol produced can be blended with gasoline. These potential sources of bioethanol are not yet commercially viable due to a polymer called lignin present in the plant’s cell wall which impedes the conversion of cellulose to glucose and the eventual fermentation of glucose to ethanol. Developing new methods for the pretreatment of lignocellulosic biomass …


A Novel Synthetic Yeast For Enzymatic Biodigester Pretreatment, Tianyu Tan, Mark S. Aronson, Arren Liu, Jill H. Osterhus, Melissa Robins, Suraj Mohan, Erich Leazer, Bowman Clark, Alexa Petrucciani, Katherine Lowery, James Welch, Casey Martin, Helena Lysandrou, Michael E. Scharf, Jenna Rickus Aug 2015

A Novel Synthetic Yeast For Enzymatic Biodigester Pretreatment, Tianyu Tan, Mark S. Aronson, Arren Liu, Jill H. Osterhus, Melissa Robins, Suraj Mohan, Erich Leazer, Bowman Clark, Alexa Petrucciani, Katherine Lowery, James Welch, Casey Martin, Helena Lysandrou, Michael E. Scharf, Jenna Rickus

The Summer Undergraduate Research Fellowship (SURF) Symposium

Lignin, a complex organic polymer, is a major roadblock to the efficiency of biofuel conversion as it both physically blocks carbohydrate substrates and poisons biomass degrading enzymes, even if broken down to monomer units. A pretreatment process is often applied to separate the lignin from biomass prior to biofuel conversion. However, contemporary methods of pretreatment require large amounts of energy, which may be economically uncompelling or unfeasible. Taking inspiration from several genes that have been isolated from termites and fungi which translate to enzymes that degrade lignin, we want to establish a novel “enzymatic pretreatment” system where microbes secrete these …


Impact Of Biofield Treatment On Atomic And Structural Characteristics Of Barium Titanate Powder, Mahendra Kumar Trivedi, Gopal Nayak, Shrikant Patil, Rama Mohan Tallapragada, Omprakash Latiyal, Snehasis Jana Aug 2015

Impact Of Biofield Treatment On Atomic And Structural Characteristics Of Barium Titanate Powder, Mahendra Kumar Trivedi, Gopal Nayak, Shrikant Patil, Rama Mohan Tallapragada, Omprakash Latiyal, Snehasis Jana

Mahendra Kumar Trivedi

Barium titanate, perovskite structure is known for its high dielectric constant and piezoelectric properties, which makes it interesting material for fabricating capacitors, transducer, actuator, and sensors. The perovskite crystal structure and lattice vibrations play a crucial role in its piezoelectric and ferroelectric behavior. In the present study, the barium titanate powder was subjected to biofield treatment. Further, the control and treated samples were characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR) and Electron spin resonance (ESR). The XRD analysis showed the permanent compressive strain of 0.45% in treated barium titanate powder as compared to control. Furthermore, the …


An Evaluation Of Biofield Treatment On Thermal, Physical And Structural Properties Of Cadmium Powder, Mahendra Kumar Trivedi, Gopal Nayak, Shrikant Patil, Rama Mohan Tallapragada, Omprakash Latiyal, Snehasis Jana Aug 2015

An Evaluation Of Biofield Treatment On Thermal, Physical And Structural Properties Of Cadmium Powder, Mahendra Kumar Trivedi, Gopal Nayak, Shrikant Patil, Rama Mohan Tallapragada, Omprakash Latiyal, Snehasis Jana

Mahendra Kumar Trivedi

Cadmium is widely utilized in nickel-cadmium batteries, stabilizers, and coating applications due to its versatile physico-chemical properties. The aim of present study was to evaluate the impact of biofield treatment on atomic, thermal, and physical properties of cadmium powder. The cadmium powder was divided into two groups, one group as control and another group as treated. The treated group received Mr. Trivedi’s biofield treatment. Control and treated samples were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), particle size analyzer, surface area analyzer, and scanning electron microscopy (SEM). XRD results showed significant alteration in lattice parameter, unit cell volume, …


Characterization Of Physical And Structural Properties Of Brass Powder After Biofield Treatment, Mahendra Kumar Trivedi, Gopal Nayak, Rama Mohan Tallapragada, Omprakash Latiyal, Snehasis Jana Jul 2015

Characterization Of Physical And Structural Properties Of Brass Powder After Biofield Treatment, Mahendra Kumar Trivedi, Gopal Nayak, Rama Mohan Tallapragada, Omprakash Latiyal, Snehasis Jana

Mahendra Kumar Trivedi

Brass, a copper-zinc (Cu-Zn) alloy has gained extensive attention in industries due to its high corrosion resistance, machinability and strength to weight ratio. The aim of present study was to evaluate the effect of biofield treatment on structural and physical properties of brass powder. The brass powder sample was divided into two parts: control and treated. The treated part was subjected to Mr.Trivedi’s biofield treatment. Control and treated brass powder were characterized using particle size analyser, X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier transform infrared (FT-IR) spectroscopy. The result showed that the average particle size, d50 and d99 …


Impact Of Biofield Treatment On Physical, Structural And Spectral Properties Of Antimony Sulfide, Mahendra Kumar Trivedi, Gopal Nayak, Shrikant Patil, Rama Mohan Tallapragada, Omprakash Latiyal Jul 2015

Impact Of Biofield Treatment On Physical, Structural And Spectral Properties Of Antimony Sulfide, Mahendra Kumar Trivedi, Gopal Nayak, Shrikant Patil, Rama Mohan Tallapragada, Omprakash Latiyal

Mahendra Kumar Trivedi

Antimony sulfide (Sb2S3) has gained extensive attention in solar cells due to their potential as a low-cost and earth abundant absorber material. In solar cell absorber, the optoelectrical properties such as energy band gap and absorption coefficient of Sb2S3 play an important role, which have strong relationships with their crystal structure, lattice parameter and crystallite size.

Hence in the present investigation, Sb2S3 powder samples were exposed to biofield treatment, and further its physical, structural and spectral properties are investigated. The particle size analysis showed larger particle size and surface area after treatment. X-ray diffraction (XRD) analysis revealed polycrystalline orthorhombic structure …


Competence Evaluation Of Mycodiesel Production By Oleaginous Fungal Strains: Mucor Circinelloides And Gliocladium Roseum, Sandip S. Magdum, Gauri P. Minde, Upendra S. Adhyapak, V. Kalyanraman Jul 2015

Competence Evaluation Of Mycodiesel Production By Oleaginous Fungal Strains: Mucor Circinelloides And Gliocladium Roseum, Sandip S. Magdum, Gauri P. Minde, Upendra S. Adhyapak, V. Kalyanraman

Sandip S. Magdum

Comparing with lesser algal growth rate for biofuel production along with many constraints, fungal route should be analyzed for its capability of biodiesel or mycodiesel production. The two fungal strains namely, Mucor circinelloides (MTCC1297) and Gliocladium roseum (MTCC6474) were analyzed for laboratory scale mycodiesel production. The M. circinelloides and G. roseum were able to produce biomass of 0.404 mg VSS/mg sucrose and 0.642 mg VSS/ mg sucrose with the mycodiesel content of 20.69% (w/w) and 11.37% (w/w) respectively. Furthermore, qualitative analysis of the oil contents by GC-MS were identified the presence of Tetradecanoic and Octadecanoic acids.


Evaluation Of Sequential Batch Reactor (Sbr) Cycle Design To Observe The Advantages Of Selector Phase Biology To Achieve Maximum Nutrient Removal, Sandip S. Magdum, Siva Kumar Varigala, Gauri P. Minde, Janardhan B. Bornare, V. Kalyanraman Jun 2015

Evaluation Of Sequential Batch Reactor (Sbr) Cycle Design To Observe The Advantages Of Selector Phase Biology To Achieve Maximum Nutrient Removal, Sandip S. Magdum, Siva Kumar Varigala, Gauri P. Minde, Janardhan B. Bornare, V. Kalyanraman

Sandip S. Magdum

Pilot plant studies of sequential batch reactor (SBR) cycles revealed the role of selector phase biology (SPB) involved in COD removal, nitrification, denitrification and total phosphate removal. The phases namely anoxic, anaerobic and aerobic in single tank reactor design of SBR were showed effective biological nutrient removal (BNR) > 90% on average in 4 h designed cycle time with 12 h of hydraulic retention time (HRT). The phases were 2 h fill which includes 1 h simultaneous fill and aeration, 1 h settle and 1 h decant. This cycle design found effective to create selective environment for microbes to carry biological …


3d Printing In Healthcare, Caleb Branch May 2015

3d Printing In Healthcare, Caleb Branch

The Review: A Journal of Undergraduate Student Research

Technology is everywhere. Technology surrounds every aspect of 21st century life. It is in the cell phones we use, the cars we drive, and even the food we eat. A large portion of modern technology used is taken for granted and overlooked. Despite this, some technology fields continue to grow. Biomedical engineering, specifically 3D printing’s applications to healthcare, has been often overlooked until. Regardless of its status in the mainstream, 3D printing is prosperous in healthcare and its future looks bright. This piece analyzes 3D printing in healthcare. It hones in on the finer details of each specific topic, …


Selection Methods For Genetically-Modified T Cells: In Support Of Translational Therapy, David Rushworth May 2015

Selection Methods For Genetically-Modified T Cells: In Support Of Translational Therapy, David Rushworth

Dissertations & Theses (Open Access)

T cells are blood cells which organize the immune system of the host. These cells are necessary for the host to respond appropriately to threats from foreign organisms and cancerous growth. However, in the case of certain infections and cancer, T cells are unable to respond appropriately to a threat and establish immunity. This leads to disease when the infection or cancer is not sufficiently eliminated. On the other hand, T cells can lack tolerance for healthy tissue and perceive healthy tissue as infected. The ensuing over-reactive immune response also leads to disease. A delicate balance must exist between immunity …


Elimination Of Hydrogenase Active Site Assembly Blocks H2 Production And Increases Ethanol Yield In Clostridium Thermocellum, Ranjita Biswas, Tianyong Zheng, Daniel G. Olson, Lee R. Lynd, Adam M. Guss Feb 2015

Elimination Of Hydrogenase Active Site Assembly Blocks H2 Production And Increases Ethanol Yield In Clostridium Thermocellum, Ranjita Biswas, Tianyong Zheng, Daniel G. Olson, Lee R. Lynd, Adam M. Guss

Dartmouth Scholarship

Background: The native ability of Clostridium thermocellum to rapidly consume cellulose and produce ethanol makes it a leading candidate for a consolidated bioprocessing (CBP) biofuel production strategy. C. thermocellum also synthesizes lactate, formate, acetate, H2 , and amino acids that compete with ethanol production for carbon and electrons. Elimination of H2 production could redirect carbon flux towards ethanol production by making more electrons available for acetyl coenzyme A reduction to ethanol. Results: H2 production in C. thermocellum is encoded by four hydrogenases. Rather than delete each individually, we targeted hydrogenase maturase gene hydG, involved in converting the …


Thermosensitive Gel Containing Cellulose Acetate Phthalate-Efavirenz Combination Nanoparticles For Prevention Of Hiv-1 Infection, Abhijit A. Date, Annemarie Shibata, Emily Mcmullen, Krista La Bruzzo, Patrick Bruck, Michael Belshan, You Zhou, Christopher J. Destache Jan 2015

Thermosensitive Gel Containing Cellulose Acetate Phthalate-Efavirenz Combination Nanoparticles For Prevention Of Hiv-1 Infection, Abhijit A. Date, Annemarie Shibata, Emily Mcmullen, Krista La Bruzzo, Patrick Bruck, Michael Belshan, You Zhou, Christopher J. Destache

Nebraska Center for Biotechnology: Faculty and Staff Publications

The objective of this investigation was to develop and evaluate a nano-microbicide containing a combination of cellulose acetate phthalate (HIV-1 entry inhibitor) and efavirenz (anti-HIV agent) for HIV prophylaxis. Cellulose acetate phthalate-efavirenz combination nanoparticles (CAP-EFV-NPs) were fabricated by the nanoprecipitation method and were characterized for particle size, zeta potential and encapsulation efficiency of efavirenz. CAP-EFV-NPs were incorporated into a thermosensitive gel (CAP-EFV-NP-Gel). CAP-EFV-NPs, CAP-EFV-NP-Gel and efavirenz solution were evaluated for cytotoxicity to HeLa cells and for in vitro short-term (1-day) and long-term (3-day) prophylaxis against HIV-1 infection in TZM-bl cells. CAP-EFV-NPs had size < 100 nm, negative surface charge and encapsulation efficiency of efavirenz was > 98%. CAP-EFV-NPs and CAP-EFV-NP-Gel were significantly less …


Target-Directed Biosynthetic Evolution: Redirecting Plant Evolution To Genomically Optimize A Plant’S Pharmacological Profile, Dustin Paul Brown Jan 2015

Target-Directed Biosynthetic Evolution: Redirecting Plant Evolution To Genomically Optimize A Plant’S Pharmacological Profile, Dustin Paul Brown

Theses and Dissertations--Neuroscience

The dissertation describes a novel method for plant drug discovery based on mutation and selection of plant cells. Despite the industry focus on chemical synthesis, plants remain a source of potent and complex bioactive metabolites. Many of these have evolved as defensive compounds targeted on key proteins in the CNS of herbivorous insects, for example the insect dopamine transporter (DAT). Because of homology with the human DAT protein some of these metabolites have high abuse potential, but others may be valuable in treating drug dependence. This dissertation redirects the evolution of a native Lobelia species toward metabolites with greater activity …


Integrated Nanoscale Imaging And Spatial Recognition Of Biomolecules On Surfaces, Congzhou Wang Jan 2015

Integrated Nanoscale Imaging And Spatial Recognition Of Biomolecules On Surfaces, Congzhou Wang

Theses and Dissertations

Biomolecules on cell surfaces play critical roles in diverse biological and physiological processes. However, conventional bulk scale techniques are unable to clarify the density and distribution of specific biomolecules in situ on single, living cell surfaces at the micro or nanoscale. In this work, a single cell analysis technique based on Atomic Force Microscopy (AFM) is developed to spatially identify biomolecules and characterize nanomechanical properties on single cell surfaces. The unique advantage of these AFM-based techniques lies in the ability to operate in situ (in a non-destructive fashion) and in real time, under physiological conditions or controlled micro-environments.

First, AFM-based …


Ex Vivo Dna Cloning, Adam B. Fisher Jan 2015

Ex Vivo Dna Cloning, Adam B. Fisher

Theses and Dissertations

Genetic engineering of microbes has developed rapidly along with our ability to synthesize DNA de novo. Yet, even with decreasing DNA synthesis costs there remains a need for inexpensive, rapid and reliable methods for assembling synthetic DNA into larger constructs or combinatorial libraries. While technological advances have resulted in powerful techniques for in vitro and in vivo assembly of DNA, each suffers inherent disadvantages. Here, an ex vivo DNA cloning suite using crude cellular lysates derived from E. coli is demonstrated to amplify and assemble DNA containing small sequence homologies. Further, the advantages of an ex vivo approach are …


Inhalable Nanocomposites And Anticancer Agents For Cancer Therapy, Nathanael A. Stocke Jan 2015

Inhalable Nanocomposites And Anticancer Agents For Cancer Therapy, Nathanael A. Stocke

Theses and Dissertations--Chemical and Materials Engineering

Cancer is designated as the leading cause of mortality worldwide and lung cancer is responsible for nearly 30% of all cancer related deaths. Over the last few decades mortality rates have only marginally increased and rates of recurrence remain high. These factors, among others, suggest the need for more innovative treatment modalities in lung cancer therapy. Targeted pulmonary delivery is well established for treating pulmonary diseases such as asthma and provides a promising platform for lung cancer therapy. Increasing local deposition of anticancer agents (ACAs) and reducing systemic exposure of these toxic moieties could lead to better therapeutic outcomes and …