Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 114

Full-Text Articles in Engineering

Design And Evaluation Of Unmanned Aerial System-Based Wireless Sensor Network For Irrigation Management, Jasreman Singh Nov 2021

Design And Evaluation Of Unmanned Aerial System-Based Wireless Sensor Network For Irrigation Management, Jasreman Singh

Department of Biological Systems Engineering: Dissertations and Theses

Increasing pressure on food production, both in terms of quantity and quality, has called for intensification and modernization of the agricultural sector. The “Internet of Things” (IoT) is a highly promising technology capable of advancing agricultural operations. The IoT-based real-time monitoring of soil water status and crop canopy temperature in maize and soybean could potentially improve irrigation efficiency, leading to the profitability of field crop production and conservation of natural resources. The overall goal of the work presented here is to design, develop, and evaluate the unmanned aerial system-based wireless sensor system (UWSN) for the purpose of irrigation management by …


Assessment Of The Effects Of Airflow Conditions Related To Hop Drying, David Mabie Aug 2021

Assessment Of The Effects Of Airflow Conditions Related To Hop Drying, David Mabie

Department of Biological Systems Engineering: Dissertations and Theses

Hops have been utilized by brewers for centuries to contribute bitterness, antimicrobial preservation and desirable aromatic profiles to beer. The hop cone is a small, lightweight, high moisture content flower which produces lupulin glands containing resins and essential oils that contribute desirable characteristics to beer. Due to the high harvest moisture content (75% wet basis), hops must be rapidly dried to properly preserve them for future processing and brewing. While hops have been dried for centuries, most literature from the past century has focused on drying to minimizing loss to the resin or physical cone structure. The objectives of this …


Tractor Instrumentation System: Hitch And Pto, And Row Crop Tractor Electrification Considerations, Andrew Donesky Aug 2021

Tractor Instrumentation System: Hitch And Pto, And Row Crop Tractor Electrification Considerations, Andrew Donesky

Department of Biological Systems Engineering: Dissertations and Theses

Power sources used for vehicles are advancing at a fast pace. Electric batteries are becoming more power dense, thus allowing them to be used with electric motors in place of a diesel or gas powered systems. There are several ways that energy use and storage size can be computed for agricultural field operations, such as planting, using theoretical predictions, gathering engine load data from tractor’s Controller Area Network (CAN) bus, or integrating the CAN data to determine the actual power used by implements.

While measuring data from the CAN bus is a great way to capture actual tractor use information, …


Development Of Tractor Instrumentation System: Hydraulics, And Controller Area Network (Can) Data Analysis Of Agricultural Machinery, Chee Town Liew Aug 2021

Development Of Tractor Instrumentation System: Hydraulics, And Controller Area Network (Can) Data Analysis Of Agricultural Machinery, Chee Town Liew

Department of Biological Systems Engineering: Dissertations and Theses

The tractor is a very important piece of machinery in agriculture, and it has been evolving and progressing over the years with improved and increasingly complex functionality. Controller Area Network (CAN) has been incorporated into tractors and other machinery with SAE J1939 and ISO 11783 standards, serving as the communication bus for various on-board electronic controller units (ECUs), and carries various machine operation data that can be used for analyzing machine performance. Investigation of data extraction from CAN messages was conducted by examining the SAE J1939 and ISO 11783 standards. A case study on CAN bus data analysis for a …


Leveraging Unmanned Aerial System Remote Sensing To Inform Energy And Water Balance Models For Spatial Soil Water Content Monitoring And Irrigation Management, Mitchell S. Maguire Jul 2021

Leveraging Unmanned Aerial System Remote Sensing To Inform Energy And Water Balance Models For Spatial Soil Water Content Monitoring And Irrigation Management, Mitchell S. Maguire

Department of Biological Systems Engineering: Dissertations and Theses

Irrigation has provided a means to produce more food and fiber throughout the world, converting low producing land into high yielding cropping systems in certain scenarios. The managing of irrigation has taken on various approaches as different locations have been constrained by different factors. Certain areas have significant ground and surface water available for irrigation while other areas struggle to meet irrigation demands due to limited water resources. These factors, along with the desire to increase crop water use efficiency, has provided the motivation to better understand crop water demands spatially within a field. A sub-field scale irrigation management study …


Efficient Polyhydroxyalkanoate Production By Rhodopseudomonas Palustris From Lignocellulosic Biomass, Brandi Brown Jul 2021

Efficient Polyhydroxyalkanoate Production By Rhodopseudomonas Palustris From Lignocellulosic Biomass, Brandi Brown

Department of Biological Systems Engineering: Dissertations and Theses

Polyhydroxyalkanoates (PHAs) are biopolymers produced by bacteria with the potential to replace conventional plastics. However, the relatively high production costs of PHAs are keeping them from market acceptance, with approximately half of the production costs derived from the feedstock. Thus, engineering a microbe for PHA production from cheaper and renewable carbon sources is necessary to promote the valorization of PHAs. Lignocellulosic biomass is considered to be one of the most economic carbon sources in the world, and is thus an attractive candidate for cheaper production of bioplastics. Rhodopseudomonas palustris CGA009 is a metabolically robust bacterium capable of catabolizing lignin breakdown …


Sensor-Based Nitrogen Management On Non-Irrigated Corn Based Systems In Nebraska, Samantha L. Teten May 2021

Sensor-Based Nitrogen Management On Non-Irrigated Corn Based Systems In Nebraska, Samantha L. Teten

Department of Biological Systems Engineering: Dissertations and Theses

Optimizing nitrogen (N) fertilizer applications in corn to reduce environmental impacts while maintaining producer profitability remains a challenge due to spatial and temporal variability in crop yield potential and soil N dynamics. In response to these challenges, active crop canopy sensors and imagery systems have been studied to test the performance of vegetative index-based N management, but adoption has been low. There is also a lack of field-scale research evaluating this technology in water-limiting environments.

The evaluation of two sensor-based N management techniques was completed at nine non-irrigated sites in Eastern Nebraska. The first sensor-based N management technique evaluated an …


Control System For Variable-Orifice Mechatronic Spray Nozzle For Regulation Of Application Rate And Droplet Size Spectra, Rodney Rohrer May 2021

Control System For Variable-Orifice Mechatronic Spray Nozzle For Regulation Of Application Rate And Droplet Size Spectra, Rodney Rohrer

Department of Biological Systems Engineering: Dissertations and Theses

Traditional fixed-orifice spray nozzles are selected for flow rate and droplet spectra required for a given pesticide application. Although limited variation in flow can be achieved by adjusting system pressure, this can adversely affect spray quality. Other nozzle configurations, such as Pulse Width Modulated (PWM) nozzles or passive variable-orifice designs, are intended to maintain consistent droplet size and spray pattern as flow rate is changed but those too have limitations.

A variable-orifice nozzle modified by Luck (2012) can span multiple droplet spectra and offers independent control of flow and droplet size; however, an advanced control system must be developed to …


Preclinical Development Of Single Walled Carbon Nanotube-Based Optical Biosensors, Eric M. Hofferber Apr 2021

Preclinical Development Of Single Walled Carbon Nanotube-Based Optical Biosensors, Eric M. Hofferber

Department of Biological Systems Engineering: Dissertations and Theses

High resolution, long-term monitoring of key biological analytes would improve patient outcomes by providing earlier detection of disease states and improved efficacy of treatment. One class of biosensors that have gained much attention in recent years are optical biosensors. Optical probes are attractive biosensors due to their noninvasive nature of detection, as certain light can pass through tissue, water, and blood. Single walled carbon nanotubes (SWNT) are a specific type of optical biosensor that fluoresce in the near infrared range of the electromagnetic spectrum and offer unparalleled spatial and temporal resolution. SWNT have been applied as biosensors in vitro, …


Evaluating Evapotranspiration Values In Rwanda Using The Fao-56 Pm, Turc, And Hargreaves-Samani Equations, Elizabeth Uwase Apr 2021

Evaluating Evapotranspiration Values In Rwanda Using The Fao-56 Pm, Turc, And Hargreaves-Samani Equations, Elizabeth Uwase

Department of Biological Systems Engineering: Dissertations and Theses

Evapotranspiration (ET) is an important component of the hydrologic cycle and involves exchange of water between the surrounding water bodies, soil, crop surfaces, and the atmosphere. Therefore, this research was aimed at determining ET and its trend across Rwanda using climatic data measured at five sites. Equations were used to calculate ET using extra-terrestrial radiations, solar radiations, evapotranspiration using the FAO-56 guidelines - Turc method (1961) and Hargreaves-Samani (HS) method (1983). The obtained data from the weather stations were analyzed using the two methods and graphs were plotted for visualization. The average monthly reference evapotranspiration for both equations ranges from …


Development Of An Internet Of Things (Iot) Enabled Novel Wireless Multi Sensor Network For Infield Crop Monitoring, Nipuna Chamara Mar 2021

Development Of An Internet Of Things (Iot) Enabled Novel Wireless Multi Sensor Network For Infield Crop Monitoring, Nipuna Chamara

Department of Biological Systems Engineering: Dissertations and Theses

Multispectral imaging systems on satellite, aerial, and ground platforms are used commonly to monitor in-field crops in precision agriculture by farmers and researchers. Limited spatial and temporal resolution and weather dependence of the data collection are two main disadvantages of these methods. In-field sensor networks can continuously monitor environmental and plant physiological parameters by leveraging low-power computation and long-range communication technologies. We built and tested a novel sensor network equipped with soil moisture, multispectral and RGB imaging sensors in an experimental soybean field at Eastern Nebraska Research and Extension Center, NE, USA. 10 down-looking and 1 up-looking sensor node were …


Quantification Of Nitric Oxide Via Single-Walled Carbon Nanotubes, Jakob Meier Dec 2020

Quantification Of Nitric Oxide Via Single-Walled Carbon Nanotubes, Jakob Meier

Department of Biological Systems Engineering: Dissertations and Theses

Nitric oxide (NO), a free radical present in biological systems, can have many beneficial and detrimental effects on the body. Due to NO’s short half-life, its detection and quantification is difficult. This inability to quantify NO has hindered researchers that are trying to understand NO’s impact in healthy and diseased conditions. Single-walled carbon nanotubes (SWNT), can become selective to various analytes when wrapped in specific single-stranded DNA strands. The presence of the analyte of interest can change the wavelength and/or intensity of the SWNT’s fluorescence, allowing the SWNT to be used as a sensor. One type of SWNT sensor, 6,5 …


Development Of Novel Catalysts For Hydrogen Gas Production From Biomass Compounds, Boanerges Bamaca Aug 2020

Development Of Novel Catalysts For Hydrogen Gas Production From Biomass Compounds, Boanerges Bamaca

Department of Biological Systems Engineering: Dissertations and Theses

Hydrothermal biomass gasification technologies (sub- and supercritical water gasification and aqueous-phase reforming) have considerable economic, environmental, and technical advantages over other energy-extensive technologies (e.g. natural gas reforming) for hydrogen gas production. However, lack of economically feasible and highly active catalysts is a main challenge that impedes upscaling of these technologies for hydrogen gas production.

The goal of this study was to develop innovative, economically feasible and active heterogeneous supported metal catalysts for hydrothermal processes for producing hydrogen gas from biomass-derived compounds. Because of its stable structure and chemical inertness, graphene was used as catalyst support. Graphene supported metal catalysts were …


On-Farm Research And Student Engagement To Assess And Promote The Use Of Organic Amendments To Improve Agricultural Soil Health And Resilience Of Crop Production Systems In Nebraska, Agustin Jose Olivo Jul 2020

On-Farm Research And Student Engagement To Assess And Promote The Use Of Organic Amendments To Improve Agricultural Soil Health And Resilience Of Crop Production Systems In Nebraska, Agustin Jose Olivo

Department of Biological Systems Engineering: Dissertations and Theses

In nearly every production environment, there are opportunities to capture profits if waste streams can be further processed or enhanced to create “value added” products. On-farm research studies were initiated in 2019 at four locations across Nebraska to assess the impacts of livestock manure, cedar mulch from forestry management and coal char from sugar beet processing, on agricultural cropland. Study treatments included beef cattle manure (CM), beef cattle slurry (CS), coal char (CC), woody biomass (WB) CM+WB, CS+WB, CM+CC and control (CON; no organic amendment). Soil properties and corn yield were evaluated after a single growing season. Results indicate that …


Improving Microbiological Safety Of Low Moisture Food Products Using Radio Frequency And Ethylene Oxide, Long Chen Jun 2020

Improving Microbiological Safety Of Low Moisture Food Products Using Radio Frequency And Ethylene Oxide, Long Chen

Department of Biological Systems Engineering: Dissertations and Theses

Recent foodborne illness outbreaks in US associated with consumption of low-moisture foods (LMF) have heightened concerns of their microbial safety. Salmonella is a pathogen of major concern in LMF due to its ability to persist in low water activity (aw) environments. The disadvantages of existing decontamination technologies for LMF call for novel and efficient intervention technologies. Radio frequency (RF) and ethylene oxide (EtO) were evaluated in this dissertation for improving microbial food safety and quality of LMF. Cumin seeds and inshell hazelnuts were selected as model foods.

It took < 2 min of stationary RF heating to achieve > 5 log reductions of Salmonella in cumin seeds without …


Using Infrared Radiometry Thermometer For Irrigation Management Of Dry Edible Beans In Western Nebraska, Isabella Presotto Possignolo May 2020

Using Infrared Radiometry Thermometer For Irrigation Management Of Dry Edible Beans In Western Nebraska, Isabella Presotto Possignolo

Department of Biological Systems Engineering: Dissertations and Theses

Proper irrigation management requires farmers to determine the right timing and amount to irrigate. Soil water sensors are one of the most popular sensor-based approach used by farmers to decide when and how much to irrigate. However, installation and retrieval of soil water sensors require excavation of soil and can be challenging. Other than soil water sensors, there are plant-based water stress monitoring technologies that are less soil disturbing such as infrared radiometry thermometer (IRT). Using canopy temperature measured from IRT, researchers can calculate thermal-based indices such as crop water stress index (CWSI) for many crops around the world. Yet …


Application Of An Ultrasonic Sensor To Monitor Soil Erosion And Deposition, Jessica E. Johnson May 2020

Application Of An Ultrasonic Sensor To Monitor Soil Erosion And Deposition, Jessica E. Johnson

Department of Biological Systems Engineering: Dissertations and Theses

While erosion and deposition are naturally occurring processes, these processes can be accelerated by human influences. The acceleration of erosion causes damage to human assets and costs billions of dollars to mitigate. Monitoring erosion at high resolutions can provide researchers and managers the data necessary to help manage erosion. Current erosion monitoring methods tend to be invasive to the area, record low frequency measurements, have a narrow spatial range of measurement, or are very expensive. There is a need for an affordable monitoring system capable of monitoring erosion and deposition non-invasively at a high resolution. The objectives of this research …


Water-Energy-Food Linkages In Shared Smallholder Irrigation Schemes, Ankit Chandra May 2020

Water-Energy-Food Linkages In Shared Smallholder Irrigation Schemes, Ankit Chandra

Department of Biological Systems Engineering: Dissertations and Theses

Irrigation is a policy focus in Sub-Saharan Africa and is viewed as an important mechanism to improve farmers’ income and livelihoods while reducing the impacts of climate change. Water, energy, and food are linked in intricate ways in irrigated agriculture, and understanding the interplay of these components is crucial for sustainable and profitable crop production. Although studies have been conducted in different parts of the world to understand water and energy use at a field scale under large irrigation systems, little is known about linkages under farmer-managed mechanized irrigated schemes in Sub-Saharan Africa. This study evaluates water-energy-food linkages, engineering and …


Maize Growth, Yield, Water Productivity And Evapotranspiration Response To Different Irrigation Methods And Amounts And Different Timing And Methods Of Nitrogen Applications, Ali T. Mohammed Apr 2020

Maize Growth, Yield, Water Productivity And Evapotranspiration Response To Different Irrigation Methods And Amounts And Different Timing And Methods Of Nitrogen Applications, Ali T. Mohammed

Department of Biological Systems Engineering: Dissertations and Theses

Declining the quantity and quality of freshwater resources in many parts of the world, including Midwestern USA, especially in the light of rapidly growing world’s population and changing climate, imposes significant and, in some cases imminent, challenges for producers, policy- and decision-makers to produce more yield with less water and other inputs, particularly in water scarcity regions.

There is not comprehensive previous research has quantified and evaluated coupled impacts of irrigation rates and nitrogen timing management strategies and their interactions on maize (Zea mays L.) productivity and its various attributed efficiency index metrics under different irrigation methods under the same …


Assessment Of Nanoparticle Accumulation With Dynamic Contrast-Enhanced Magnetic Resonance Imaging, Hunter Miller Apr 2020

Assessment Of Nanoparticle Accumulation With Dynamic Contrast-Enhanced Magnetic Resonance Imaging, Hunter Miller

Department of Biological Systems Engineering: Dissertations and Theses

Nanoparticle (NP)-based therapeutics promise to improve medicine in multiple areas by increasing target engagement. To date, most research has focused on cancer, aiming to increase uptake using the enhanced permeability and retention (EPR) effect. Despite pre-clinical success in proof-of-concept studies, understanding of the fundamental interactions between NP and biological systems that govern outcomes remains incomplete. To realize the potential of NPs for cancer therapeutics, and to expand their application into other diseases, the roles physicochemical properties play in NP uptake must be better understood. Some investigations have been performed into the effects of size and surface charge on uptake into …


Flex-Ro: A Robotic High Throughput Field Phenotyping System, Joshua N. Murman Dec 2019

Flex-Ro: A Robotic High Throughput Field Phenotyping System, Joshua N. Murman

Department of Biological Systems Engineering: Dissertations and Theses

Research in agriculture is critical to developing techniques to meet the world’s demand for food, fuel, fiber, and feed. Optimization of crop production per unit of land requires scientists across disciplines to collaborate and investigate new areas of science and tools for data collection. The use of robotics has been adopted in several industries to supplement labor, and accurately perform repetitious tasks. However, the use of autonomous robots in commercial agricultural production is still limited. The Flex-Ro (Flexible structured Robotic platform) was developed for use in large area fields as a multipurpose tool to perform monotonous agricultural tasks.

This work …


Persistence And Mitigation Of Antibiotic Resistance In Manure And Manure-Amended Soils, Mara J. Zelt Dec 2019

Persistence And Mitigation Of Antibiotic Resistance In Manure And Manure-Amended Soils, Mara J. Zelt

Department of Biological Systems Engineering: Dissertations and Theses

The emergence of antibiotic resistance (AR) is a growing global threat to human and animal health. The work described here asses the AR mitigation potential of management strategies at critical control points in livestock production, and agricultural land management as well as the effectiveness of a communication strategy to convey research-based information to empower behavioral change that could mitigate AR.

The first study evaluates the impact of beef cattle diet management strategies on AMR prevalence in manure. Two treatments – forage concentration and essential oils – in cattle diets were evaluated for their impact on AMR bacteria in feedlot manure. …


Predicting Agricultural Implement Hydraulic Power Demand Using Synchronized Controller Area Network And Ancillary Sensor Data, Gabriel P. Stoll Nov 2019

Predicting Agricultural Implement Hydraulic Power Demand Using Synchronized Controller Area Network And Ancillary Sensor Data, Gabriel P. Stoll

Department of Biological Systems Engineering: Dissertations and Theses

As agricultural implement designs have progressed in recent years, there has been an increase in hydraulic power demand from the tractor. Current power estimation standards do not accurately estimate hydraulic power demand for implements designed with higher hydraulic power requirements. Several stakeholders, including agricultural producers, tractor and implement manufacturers, and government agencies would benefit from accurate published data on these power requirements.

While an increasing amount of operational data available on the Controller Area Network (CAN) of tractors has assisted researchers in more easily obtaining machinery performance data, hydraulic control valve flow rate and pressure measurements are not currently publically …


Adding Value To Lignocellulosic Biorefinery: Efficient Process Development Of Lignocellulosic Biomass Conversion Into Polyhydroxybutyrate, Mengxing Li Nov 2019

Adding Value To Lignocellulosic Biorefinery: Efficient Process Development Of Lignocellulosic Biomass Conversion Into Polyhydroxybutyrate, Mengxing Li

Department of Biological Systems Engineering: Dissertations and Theses

Polyhydroxybutyrate (PHB) is bacteria synthesized polymer that has comparable mechanical properties as petroleum-based plastics and high biocompatibility. Current commercial PHB production process is not cost effective. Raw materials make up about 50% of the production cost. Lignocellulosic biomass are cheap, abundant feedstocks that can be converted into PHB to add profit and sustainability to lignocellulosic biorefinery. Lignocellulosic biorefinery upstream process produces polymeric sugar rich stream and lignin-enriched stream. Polymeric sugars are then hydrolyzed into a sugar stream with glucose, xyloseand arabinose mainly present. To the best of the author’s knowledge, limited studies have been done on sugar mixture conversion into …


Mid To Late Season Weed Detection In Soybean Production Fields Using Unmanned Aerial Vehicle And Machine Learning, Arun Narenthiran Veeranampalayam Sivakumar Jul 2019

Mid To Late Season Weed Detection In Soybean Production Fields Using Unmanned Aerial Vehicle And Machine Learning, Arun Narenthiran Veeranampalayam Sivakumar

Department of Biological Systems Engineering: Dissertations and Theses

Mid-late season weeds are those that escape the early season herbicide applications and those that emerge late in the season. They might not affect the crop yield, but if uncontrolled, will produce a large number of seeds causing problems in the subsequent years. In this study, high-resolution aerial imagery of mid-season weeds in soybean fields was captured using an unmanned aerial vehicle (UAV) and the performance of two different automated weed detection approaches – patch-based classification and object detection was studied for site-specific weed management. For the patch-based classification approach, several conventional machine learning models on Haralick texture features were …


Design, Development, And Field Testing A Visnir Integrated Multi-Sensing Soil Penetrometer, Nuwan K. Wijewardane Jul 2019

Design, Development, And Field Testing A Visnir Integrated Multi-Sensing Soil Penetrometer, Nuwan K. Wijewardane

Department of Biological Systems Engineering: Dissertations and Theses

The research community in soil science and agriculture lacks a cost-effective and rapid technology for in situ, high resolution vertical soil sensing. Visible and near infra-red (VisNIR) technology has the potential to be used for such sensor development due to its ability to derive multiple soil properties rapidly using a single spectrum. Such efforts must, however, overcome a few challenges: (i) a dry ground soil spectral library that can be used to predict the target soil properties accurately, (ii) a robust design which can acquire high quality VisNIR spectra of soil, (iii) an effective method that can link field intact …


A Multi-Sensor Phenotyping System: Applications On Wheat Height Estimation And Soybean Trait Early Prediction, Wenan Yuan Jul 2019

A Multi-Sensor Phenotyping System: Applications On Wheat Height Estimation And Soybean Trait Early Prediction, Wenan Yuan

Department of Biological Systems Engineering: Dissertations and Theses

Phenotyping is an essential aspect for plant breeding research since it is the foundation of the plant selection process. Traditional plant phenotyping methods such as measuring and recording plant traits manually can be inefficient, laborious and prone to error. With the help of modern sensing technologies, high-throughput field phenotyping is becoming popular recently due to its ability of sensing various crop traits non-destructively with high efficiency. A multi-sensor phenotyping system equipped with red-green-blue (RGB) cameras, radiometers, ultrasonic sensors, spectrometers, a global positioning system (GPS) receiver, a pyranometer, a temperature and relative humidity probe and a light detection and ranging (LiDAR) …


Tailoring Cell-Material Interactions Via Poly(Acrylic Acid) Brushes To Enhance Nonviral Substrate-Mediated Gene Delivery, Amy Mantz Jul 2019

Tailoring Cell-Material Interactions Via Poly(Acrylic Acid) Brushes To Enhance Nonviral Substrate-Mediated Gene Delivery, Amy Mantz

Department of Biological Systems Engineering: Dissertations and Theses

Nonviral gene delivery modifies gene expression by transferring exogenous genetic material into cells and tissues, typically through a bolus of complexes formed by electrostatic interactions between cationic lipid or polymer vectors with negatively charged nucleic acids (e.g. DNA). Although nonviral gene delivery is safer, more cost-effective, and more flexible compared to viral systems, nonviral transfection suffers from low efficiency due to extracellular and intracellular barriers. Much research has focused on tuning physiochemical properties of the complexing vectors to improve transfection, yet the cell-material interface may prove a better platform to immobilize DNA complexes for substrate-mediated delivery (SMD) and modulate the …


In Vivo Human-Like Robotic Phenotyping Of Leaf And Stem Traits In Maize And Sorghum In Greenhouse, Abbas Atefi Jul 2019

In Vivo Human-Like Robotic Phenotyping Of Leaf And Stem Traits In Maize And Sorghum In Greenhouse, Abbas Atefi

Department of Biological Systems Engineering: Dissertations and Theses

In plant phenotyping, the measurement of morphological, physiological and chemical traits of leaves and stems is needed to investigate and monitor the condition of plants. The manual measurement of these properties is time consuming, tedious, error prone, and laborious. The use of robots is a new approach to accomplish such endeavors, which enables automatic monitoring with minimal human intervention. In this study, two plant phenotyping robotic systems were developed to realize automated measurement of plant leaf properties and stem diameter which could reduce the tediousness of data collection compare to manual measurements. The robotic systems comprised of a four degree …


Uumanned Aerial Vehicle Data Analysis For High-Throughput Plant Phenotyping, Jiating Li May 2019

Uumanned Aerial Vehicle Data Analysis For High-Throughput Plant Phenotyping, Jiating Li

Department of Biological Systems Engineering: Dissertations and Theses

The continuing population is placing unprecedented demands on worldwide crop yield production and quality. Improving genomic selection for breeding process is one essential aspect for solving this dilemma. Benefitted from the advances in high-throughput genotyping, researchers already gained better understanding of genetic traits. However, given the comparatively lower efficiency in current phenotyping technique, the significance of phenotypic traits has still not fully exploited in genomic selection. Therefore, improving HTPP efficiency has become an urgent task for researchers. As one of the platforms utilized for collecting HTPP data, unmanned aerial vehicle (UAV) allows high quality data to be collected within short …