Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

High Power, Low Frequency Ultrasound: Meniscal Tissue Interaction And Ablation Characteristics, Brendan O'Daly, Edmund Morris, Graham Gavin, Conor Keane, John O Byrne, Garrett Mcguinness Jan 2011

High Power, Low Frequency Ultrasound: Meniscal Tissue Interaction And Ablation Characteristics, Brendan O'Daly, Edmund Morris, Graham Gavin, Conor Keane, John O Byrne, Garrett Mcguinness

Articles

Abstract—This study evaluates high power low frequency ultrasound transmitted via a flat vibrating probe tip as an alternative technology for meniscal debridement in the bovine knee. An experimental force controlled testing rig was constructed using a 20 kHz ultrasonic probe suspended vertically from a load cell. Effect of variation in amplitude of distal tip displacement (242–494 mm peak-peak) settings and force (2.5–4.5 N) on tissue removal rate (TRR) and penetration rate (PR) for 52 bovine meniscus samples was analyzed. Temperature elevation in residual meniscus was measured by embedded thermocouples and histologic analysis. As amplitude or force increases, there is a …


In-Silico Hyperthermia Performance Of A Near-Field Patch Antenna At Various Positions On A Human Body Model, Sergio Curto, Terrence See, Patrick Mcevoy, Max Ammann, Zhi Ning Chen Jan 2011

In-Silico Hyperthermia Performance Of A Near-Field Patch Antenna At Various Positions On A Human Body Model, Sergio Curto, Terrence See, Patrick Mcevoy, Max Ammann, Zhi Ning Chen

Articles

A compact patch applicator designed to enhance targeted energy coupling at 434 MHz is a key enabler for sensitizing temperature increments in body regions containing superficial tumours. A detailed FDTD body model is used to explore simulated RF coupling and temperature increments for typical clinical conditions. The antenna impedance matching, specific absorption rate and thermal distribution parameters are evaluated to identify applied performance outcomes. The analysis reveals physiological-RF coupling patterns for an optimised closely-coupled single element applicator.