Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering

Cleveland State University

Chemical & Biomedical Engineering Faculty Publications

Keyword
Publication Year

Articles 1 - 30 of 33

Full-Text Articles in Engineering

Role Of Inflammatory Niche And Adult Cardiomyocyte Coculture On Differentiation, Matrix Synthesis, And Secretome Release By Human Bone Marrow Mesenchymal Stem Cells, Jyotsna Joshi, Chandrasekhar R. Kothapalli Jan 2022

Role Of Inflammatory Niche And Adult Cardiomyocyte Coculture On Differentiation, Matrix Synthesis, And Secretome Release By Human Bone Marrow Mesenchymal Stem Cells, Jyotsna Joshi, Chandrasekhar R. Kothapalli

Chemical & Biomedical Engineering Faculty Publications

Myocardial infarction (MI) causes cardiomyocyte death, provokes innate immune response, and initiates tissue remodeling. The intrinsic healing process is insufficient to replace the lost cells, or regenerate and restore the functional features of the native myocardium. Autologous bone marrow-derived mesenchymal stem cell (BM-MSC) transplantation is being explored to offer therapeutic potential after MI. Here, we cultured human BM-MSC spheroids in three-dimensional collagenous gels for 28 days under exposure to tumor necrosis factor-alpha (+ TNFα), and coculture with adult human cardiomyocytes, or with conditioned media (CM) pooled from TNFα-stimulated adult cardiomyocytes. MSC differentiation marker (CD90, GATA4, cTnI, cTnT, Cx43, MHC, α-actin) …


Synthesis And Secretome Release By Human Bone Marrow Mesenchymal Stem Cell Spheroids Within Three-Dimensional Collagen Hydrogels: Integrating Experiments And Modelling, Jyotsna Joshi, Mohammadreza Dehghan Abnavi, Chandrasekhar R. Kothapalli Oct 2019

Synthesis And Secretome Release By Human Bone Marrow Mesenchymal Stem Cell Spheroids Within Three-Dimensional Collagen Hydrogels: Integrating Experiments And Modelling, Jyotsna Joshi, Mohammadreza Dehghan Abnavi, Chandrasekhar R. Kothapalli

Chemical & Biomedical Engineering Faculty Publications

Myocardial infarction results in loss of cardiac cell types, inflammation, extracellular matrix (ECM) degradation, and fibrotic scar. Transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) is being explored as they could differentiate into cardiomyocyte-like cells, integrate into host tissue, and enhance resident cell activity. The ability of these cells to restore lost ECM, remodel the inflammatory scar tissue, and repair the injured myocardium remains unexplored. We here elucidated the synthesis and deposition of ECM (e.g., elastin, sulfated glycosaminoglycans, hyaluronan, collagen type III, laminin, fibrillin, lysyl oxidase, and nitric oxide synthases), matrix metalloproteinases (MMPs) and their inhibitors (TIMPs), and other secretome …


Biophysical And Biomechanical Properties Of Neural Progenitor Cells As Indicators Of Developmental Neurotoxicity, Gautam Mahajan, Moo-Yeal Lee, Chandrasekhar R. Kothapalli Oct 2019

Biophysical And Biomechanical Properties Of Neural Progenitor Cells As Indicators Of Developmental Neurotoxicity, Gautam Mahajan, Moo-Yeal Lee, Chandrasekhar R. Kothapalli

Chemical & Biomedical Engineering Faculty Publications

Conventional in vitro toxicity studies have focused on identifying IC50 and the underlying mechanisms, but how toxicants influence biophysical and biomechanical changes in human cells, especially during developmental stages, remain understudied. Here, using an atomic force microscope, we characterized changes in biophysical (cell area, actin organization) and biomechanical (Young's modulus, force of adhesion, tether force, membrane tension, tether radius) aspects of human fetal brain-derived neural progenitor cells (NPCs) induced by four classes of widely used toxic compounds, including rotenone, digoxin, N-arachidonoylethanolamide (AEA), and chlorpyrifos, under exposure up to 36 h. The sub-cellular mechanisms (apoptosis, mitochondria membrane potential, DNA damage, glutathione …


Idiosyncratic Drug-Induced Liver Injury (Idili): Potential Mechanisms And Predictive Assays, Alexander D. Roth, Moo-Yeal Lee Jan 2017

Idiosyncratic Drug-Induced Liver Injury (Idili): Potential Mechanisms And Predictive Assays, Alexander D. Roth, Moo-Yeal Lee

Chemical & Biomedical Engineering Faculty Publications

Idiosyncratic drug-induced liver injury (IDILI) is a significant source of drug recall and acute liver failure (ALF) in the United States. While current drug development processes emphasize general toxicity and drug metabolizing enzyme- (DME-) mediated toxicity, it has been challenging to develop comprehensive models for assessing complete idiosyncratic potential. In this review, we describe the enzymes and proteins that contain polymorphisms believed to contribute to IDILI, including ones that affect phase I and phase II metabolism, antioxidant enzymes, drug transporters, inflammation, and human leukocyte antigen (HLA). We then describe the various assays that have been developed to detect individual reactions …


Methodological Considerations Of Electron Spin Resonance Spin Trapping Techniques For Measuring Reactive Oxygen Species Generated From Metal Oxide Nanomaterials, Min Sook Jeong, Kyeong-Nam Yu, Hyun Hoon Chung, Soo Jin Park, Ah Young Lee, Mi Ryoung Song, Myung-Haing Cho, Jun Sung Kim May 2016

Methodological Considerations Of Electron Spin Resonance Spin Trapping Techniques For Measuring Reactive Oxygen Species Generated From Metal Oxide Nanomaterials, Min Sook Jeong, Kyeong-Nam Yu, Hyun Hoon Chung, Soo Jin Park, Ah Young Lee, Mi Ryoung Song, Myung-Haing Cho, Jun Sung Kim

Chemical & Biomedical Engineering Faculty Publications

Qualitative and quantitative analyses of reactive oxygen species (ROS) generated on the surfaces of nanomaterials are important for understanding their toxicity and toxic mechanisms, which are in turn beneficial for manufacturing more biocompatible nanomaterials in many industrial fields. Electron spin resonance (ESR) is a useful tool for detecting ROS formation. However, using this technique without first considering the physicochemical properties of nanomaterials and proper conditions of the spin trapping agent (such as incubation time) may lead to misinterpretation of the resulting data. In this report, we suggest methodological considerations for ESR as pertains to magnetism, sample preparation and proper incubation …


An Analytical Model For Rotator Cuff Repairs, A. Aurora, Jorge E. Gatica, A.J. Van Den Bogert, J. A. Mccarron, Kathleen A. Derwin Oct 2010

An Analytical Model For Rotator Cuff Repairs, A. Aurora, Jorge E. Gatica, A.J. Van Den Bogert, J. A. Mccarron, Kathleen A. Derwin

Chemical & Biomedical Engineering Faculty Publications

Background: Currently, natural and synthetic scaffolds are being explored as augmentation devices for rotator cuff repair. When used in this manner, these devices are believed to offer some degree of load sharing; however, no studies have quantified this effect. Furthermore, the manner in which loads on an augmented rotator cuff repair are distributed among the various components of the repair is not known, nor is the relative biomechanical importance of each component. The objectives of this study are to (1) develop quasi-static analytical models of simplified rotator cuff repairs, (2) validate the models, and (3) predict the degree of …


A Simple Apparatus For Measuring Cell Settling Velocity, Zhaowei Wang, Joanne M. Belovich Sep 2010

A Simple Apparatus For Measuring Cell Settling Velocity, Zhaowei Wang, Joanne M. Belovich

Chemical & Biomedical Engineering Faculty Publications

Accurate cell settling velocity determination is critical for perfusion culture using a gravity settler for cell retention. We have developed a simple apparatus (a 'settling column') for measuring settling velocity and have validated the procedure with 15-μm polystyrene particles with known physical properties. The measured settling velocity of the polystyrene particles is within 4% of the value obtained using the traditional Stokes' law approach. The settling velocities of three hybridoma cell lines were measured, resulting in up to twofold variation among cell lines, and the values decreased as the cell culture aged. The settling velocities of the nonviable cells were …


Lipids And Collagen Matrix Restrict The Hydraulic Permeability Within The Porous Compartment Of Adult Cortical Bone, Demin Wen, Caroline Androjna, Amit Vasanji, Joanne M. Belovich, Ronald J. Midura Mar 2010

Lipids And Collagen Matrix Restrict The Hydraulic Permeability Within The Porous Compartment Of Adult Cortical Bone, Demin Wen, Caroline Androjna, Amit Vasanji, Joanne M. Belovich, Ronald J. Midura

Chemical & Biomedical Engineering Faculty Publications

In vivo the hydraulic permeability of cortical bone influences the transport of nutrients, waste products and signaling molecules, thus influencing the metabolic functions of osteocytes and osteoblasts. In the current study two hypotheses were tested: the presence of (1) lipids and (2) collagen matrix in the porous compartment of cortical bone restricts its permeability. Our approach was to measure the radial permeability of adult canine cortical bone before and after extracting lipids with acetone-methanol, and before and after digesting collagen with bacterial collagenase. Our results showed that the permeability of adult canine cortical bone was below 4.0 × 10 …


Oxygen Diffusion Through Natural Extracellular Matrices: Implications For Estimating "Critical Thickness" Values In Tendon Tissue Engineering, Caroline Androjna, Jorge E. Gatica, Joanne M. Belovich, Kathleen A. Derwin Apr 2008

Oxygen Diffusion Through Natural Extracellular Matrices: Implications For Estimating "Critical Thickness" Values In Tendon Tissue Engineering, Caroline Androjna, Jorge E. Gatica, Joanne M. Belovich, Kathleen A. Derwin

Chemical & Biomedical Engineering Faculty Publications

Oxygen is necessary for maintaining cell proliferation and viability and extracellular matrix (ECM) production in 3-dimensional tissue engineering. Typically, diffusion is the primary mode for oxygen transport in vitro; thus, ensuring an adequate oxygen supply is essential. In this study, we determined the oxygen diffusion coefficients of 3 natural ECMs that are being investigated as construct scaffolds for tendon tissue engineering: small-intestine submucosa (SIS), human dermis (Alloderm (R)), and canine fascia lata. Diffusion coefficients were determined using a standard diffusion cell system. The ranges for each matrix type were: SIS: 7 x 10(-6) - 2 x 10(-5) cm(2)/s, Alloderm (R): …


A Computer Model Of Gluconeogenesis And Lipid Metabolism In The Perfused Liver, Elie Chalhoub, Richard W. Hanson, Joanne M. Belovich Dec 2007

A Computer Model Of Gluconeogenesis And Lipid Metabolism In The Perfused Liver, Elie Chalhoub, Richard W. Hanson, Joanne M. Belovich

Chemical & Biomedical Engineering Faculty Publications

A mathematical model of the perfused rat liver was developed to predict intermediate metabolite concentrations and fluxes in response to changes in various substrate concentrations in the perfusion medium. The model simulates gluconeogenesis in the liver perfused separately with lactate and pyruvate and the combination of these substrates with fatty acids (oleate). The model consists of key reactions representing gluconeogenesis, glycolysis, fatty acid metabolism, tricarboxylic acid cycle, oxidative phosphorylation, and ketogenesis. Michaelis-Menten-type kinetic expressions, with control by ATP/ADP, are used for many of the reactions. For key regulated reactions (fructose-1,6-bisphosphatase, phosphofructokinase, pyruvate carboxylase, pyruvate dehydrogenase complex, and pyruvate kinase), rate …


Anwendung Von Interferenz- Und Ir-Mikroskopie Zur Charakterisierung Und Untersuchung Des Stofftransportes In Nanoporösen Materialien, Lars Heinke, Christian Chmelik, Pavel Kortunov, Sergey Vasenkov, Douglas M. Ruthven, Dhananjai B. Shah, Jörg Kärger Aug 2007

Anwendung Von Interferenz- Und Ir-Mikroskopie Zur Charakterisierung Und Untersuchung Des Stofftransportes In Nanoporösen Materialien, Lars Heinke, Christian Chmelik, Pavel Kortunov, Sergey Vasenkov, Douglas M. Ruthven, Dhananjai B. Shah, Jörg Kärger

Chemical & Biomedical Engineering Faculty Publications

Die Anwendung der Interferenz-Mikroskopie bedeutet einen entscheidenden Durchbruch in der Untersuchung des Stofftransports von Gastmolekülen in nanoporösen Wirtsmaterialien. Diese Technik ermöglicht die Beobachtung der zeitaufgelösten intrakristallinen Konzentrationsprofile, die durch eine Änderung des umgebenden Gasdruckes entstehen. Dieser Ansatz wurde zur Untersuchung von Adsorptions- und Desorptionsprozessen in verschiedenen Zeolithsystemen verwendet. Die Vorteile dieser Technik, vor allem wenn sie mit Infrarotabsorptionsmessungen kombiniert wird, werden an Hand der experimentellen Resultate des Methanol-in-Ferrierit-Systems illustriert.


A Distributed Model Of Carbohydrate Transport And Metabolism In The Liver During Rest And High-Intensity Exercise, E Chalhoub, L. Xie, V. Balasubramanian, Joanne M. Belovich Mar 2007

A Distributed Model Of Carbohydrate Transport And Metabolism In The Liver During Rest And High-Intensity Exercise, E Chalhoub, L. Xie, V. Balasubramanian, Joanne M. Belovich

Chemical & Biomedical Engineering Faculty Publications

A model of reaction and transport in the liver was developed that describes the metabolite concentration and reaction flux dynamics separately within the tissue and blood domains. The blood domain contains equations for convection, axial dispersion, and transport to the surrounding tissue; and the tissue domain consists of reactions representing key carbohydrate metabolic pathways. The model includes the metabolic heterogeneity of the liver by incorporating spatial variation of key enzymatic maximal activities. Simulation results of the overnight fasted, resting state agree closely with experimental values of overall glucose uptake and lactate output by the liver. The incorporation of zonation …


Noninvasive Quantification Of Fluid Mechanical Energy Losses In The Total Cavopulmonary Connection With Magnetic Resonance Phase Velocity Mapping, Anand K. Venkatachari, Sandra S. Halliburton, Randolph M. Setser, Richard D. White, George P. Chatzimavroudis Jan 2007

Noninvasive Quantification Of Fluid Mechanical Energy Losses In The Total Cavopulmonary Connection With Magnetic Resonance Phase Velocity Mapping, Anand K. Venkatachari, Sandra S. Halliburton, Randolph M. Setser, Richard D. White, George P. Chatzimavroudis

Chemical & Biomedical Engineering Faculty Publications

A major determinant of the success of surgical vascular modifications, such as the total cavopulmonary connection (TCPC), is the energetic efficiency that is assessed by calculating the mechanical energy loss of blood flow through the new connection. Currently, however, to determine the energy loss, invasive pressure measurements are necessary. Therefore, this study evaluated the feasibility of the viscous dissipation (VD) method, which has the potential to provide the energy loss without the need for invasive pressure measurements. Two experimental phantoms, a U-shaped tube and a glass TCPC, were scanned in a magnetic resonance (MR) imaging scanner and the images were …


Procedure To Quantify Biofilm Activity In Carriers Used In Wastewater Treatment Systems, James Bolton, Archana Tummala, Chirag Kapadia, Manoj Dandamudi, Joanne M. Belovich Nov 2006

Procedure To Quantify Biofilm Activity In Carriers Used In Wastewater Treatment Systems, James Bolton, Archana Tummala, Chirag Kapadia, Manoj Dandamudi, Joanne M. Belovich

Chemical & Biomedical Engineering Faculty Publications

A procedure is presented for evaluating and comparing the biological activity of biofilms attached to various biofilm carriers by measurement of the glucose consumption rate. This technique allows for the economical design and selection of small particulate biofilm carriers that will maximize substrate removal when used in industrial-scale fluidized bioreactors. Methods for ensuring reproducible results are described. To support the glucose consumption rate findings, biofilm dry weights were obtained at the conclusion of activity rate experiments, and scanning electron micrographs were taken to evaluate the presence of biofilm and to view surface characteristics. Fourteen different biofilm carriers were evaluated ranging …


Reliable In-Plane Velocity Measurements With Magnetic Resonance Velocity Imaging, Haosen Zhang, Sandra S. Halliburton, Andan K. Venkatachari, Randolph M. Setser, Richard D. White, George P. Chatzimavroudis Apr 2006

Reliable In-Plane Velocity Measurements With Magnetic Resonance Velocity Imaging, Haosen Zhang, Sandra S. Halliburton, Andan K. Venkatachari, Randolph M. Setser, Richard D. White, George P. Chatzimavroudis

Chemical & Biomedical Engineering Faculty Publications

Magnetic resonance (MR) imaging is a well-known diagnostic imaging modality. In addition to its high-quality imaging capabilities, hydrogen-based MR can also provide non-invasively the velocity of water-based fluids in all three spatial directions (through-plane and in-plane) in an image. Many previous studies showed that MR velocity imaging can accurately measure the through-plane velocity. The aim of this study was to evaluate how reliable are the in-plane velocity measurements in an image. The axial velocity of water in horizontal tubes (inner diameter: 14.7–26.2 mm) was measured with segmented (fast) and non-segmented (slow) k-space MR velocity …


Blood Flow Measurements With Magnetic Resonance Phase Velocity Mapping, George P. Chatzimavroudis Apr 2005

Blood Flow Measurements With Magnetic Resonance Phase Velocity Mapping, George P. Chatzimavroudis

Chemical & Biomedical Engineering Faculty Publications

Magnetic resonance (MR) phase velocity mapping (PVM) is a non-invasive technique that can measure the flow velocity in any spatial direction in an imaging slice. This technique has wide application in the clinical field in quantifying blood flow, as well as in non-biomedical areas. This review describes the value and/or potential of MR PVM as a diagnostic/monitoring technique in heart valve regurgitation and in the total cavo-pulmonary connection. A single slice placed in the aortic root can accurately quantify the aortic regurgitant volume. A multi-slice control volume method has high potential for the quantification of the mitral regurgitant volume. …


Segmentation Of Non-Viable Myocardium In Delayed Enhancement Magnetic Resonance Images, Arunark Kolipaka, George P. Chatzimavroudis, Richard D. White, Thomas P. O’Donnell, Randolph M. Setser Apr 2005

Segmentation Of Non-Viable Myocardium In Delayed Enhancement Magnetic Resonance Images, Arunark Kolipaka, George P. Chatzimavroudis, Richard D. White, Thomas P. O’Donnell, Randolph M. Setser

Chemical & Biomedical Engineering Faculty Publications

Purpose: To evaluate six algorithms for segmenting non-viable left ventricular (LV) myocardium in delayed enhancement (DE) magnetic resonance imaging (MRI). Methods: Twenty-three patients with known chronic ischemic heart disease underwent DE-MRI. DE images were first manually thresholded using an interactive region-filling tool to isolate non-viable myocardium. Then, six thresholding algorithms, based on the image intensity characteristics of either LV blood pool (BP), viable LV myocardium, or both, were applied to each image. For the Mean−2SDBP algorithm, thresholds were equal to the mean BP intensity minus twice its standard deviation. For the Mean+2SDSemi, Mean+3SDSemi, Mean+2SDAuto …


Relationship Between The Extent Of Non-Viable Myocardium And Regional Left Ventricular Function In Chronic Ischemic Heart Disease, Arunark Kolipaka, George P. Chatzimavroudis, Richard D. White, Michael L. Lieber, Randolph M. Setser Jan 2005

Relationship Between The Extent Of Non-Viable Myocardium And Regional Left Ventricular Function In Chronic Ischemic Heart Disease, Arunark Kolipaka, George P. Chatzimavroudis, Richard D. White, Michael L. Lieber, Randolph M. Setser

Chemical & Biomedical Engineering Faculty Publications

Purpose. To define the relationship between left ventricular (LV) regional contractile function and the extent of myocardial scar in patients with chronic ischemic heart disease and multi-vessel coronary artery disease. Methods. Twenty-three patients with chronic ischemic heart disease and 5 healthy volunteers underwent magnetic resonance imaging (MRI). In patients, the relative area ( Percent Scar) and transmural extent (Transmurality) of myocardial infarction were computed from short-axis delayed enhancement images. In each image, myocardial segments were categorized based on the extent of infarction they contained, with 6 categories each for Percent Scar and Transmurality: normal, from healthy volunteers; and 0%; 1–25%, …


Fast Measurements Of Flow Through Mitral Regurgitant Orifices With Magnetic Resonance Phase Velocity Mapping, Haosen Zhang, Sandra S. Halliburton, Richard D. White, George P. Chatzimavroudis Dec 2004

Fast Measurements Of Flow Through Mitral Regurgitant Orifices With Magnetic Resonance Phase Velocity Mapping, Haosen Zhang, Sandra S. Halliburton, Richard D. White, George P. Chatzimavroudis

Chemical & Biomedical Engineering Faculty Publications

Magnetic-resonance (MR) phase velocity mapping (PVM) shows promise in measuring the mitral regurgitant volume. However, in its conventional nonsegmented form, MR-PVM is slow and impractical for clinical use. The aim of this study was to evaluate the accuracy of rapid, segmented k-spaceMR-PVM in quantifying the mitral regurgitant flow through a control volume (CV) method. Two segmented MR-PVM schemes, one with seven (seg-7) and one with nine (seg-9) lines per segment, were evaluated in acrylic regurgitant mitral valve models under steady and pulsatile flow. A nonsegmented (nonseg) MR-PVM acquisition was also performed for reference. The segmented acquisitions were …


Clinical Blood Flow Quantification With Segmented K-Space Magnetic Resonance Phase Velocity Mapping, George P. Chatzimavroudis, Haosen Zhang, Sandra S. Halliburton, James R. Moore, Orlando Simonetti, Paulo R. Schvartzman, Arthur E. Stillman, Richard D. White Jan 2003

Clinical Blood Flow Quantification With Segmented K-Space Magnetic Resonance Phase Velocity Mapping, George P. Chatzimavroudis, Haosen Zhang, Sandra S. Halliburton, James R. Moore, Orlando Simonetti, Paulo R. Schvartzman, Arthur E. Stillman, Richard D. White

Chemical & Biomedical Engineering Faculty Publications

To evaluate the accuracy of segmented k-space magnetic resonance phase velocity mapping (PVM) in quantifying aortic blood flow from through-plane velocity measurements.

Two segmented PVM schemes were evaluated, one with seven lines per segment (seg-7) and one with nine lines per segment (seg-9), in twenty patients with cardiovascular disease. A non-segmented (non-seg) PVM acquisition was also performed to provide the reference data.

There was agreement between the aortic flow curves acquired with segmented and non-segmented PVM. The calculated systolic and total flow volume per cycle from the seg-7 and the seg-9 scans correlated and agreed with the flow volumes from …


Accurate Quantification Of Steady And Pulsatile Flow With Segmented K-Space Magnetic Resonance Velocimetry, Haosen Zhang, Sandra S. Halliburton, James R. Moore, Orlando P. Simonetti, Paulo R. Schvartzman, Richard D. White, George P. Chatzimavroudis Sep 2002

Accurate Quantification Of Steady And Pulsatile Flow With Segmented K-Space Magnetic Resonance Velocimetry, Haosen Zhang, Sandra S. Halliburton, James R. Moore, Orlando P. Simonetti, Paulo R. Schvartzman, Richard D. White, George P. Chatzimavroudis

Chemical & Biomedical Engineering Faculty Publications

Conventional non-segmented magnetic resonance phase velocity mapping (MRPVM) is an accurate but relatively slow velocimetric technique. Therefore, the aim of this study was to evaluate the accuracy of the much faster segmented k-space MRPVM in quantifying flow. The axial velocity was measured in four straight tubes (inner diameter: 5.6–26.2 mm), using a segmented MRPVM sequence with seven lines of k-space per segment. The flow rate and flow volume were accurately quantified (errorssteady (r2=0.99) and pulsatile flow (r2=0.98), respectively. The measured velocity profiles and flow rates from the segmented sequence agreed …


Ultrafast Flow Quantification With Segmented K-Space Magnetic Resonance Phase Velocity Mapping, Haosen Zhang, Sandra S. Halliburton, James R. Moore, Orlando P. Simonetti, Paulo R. Schvartzman, Richard D. White, George P. Chatzimavroudis Jan 2002

Ultrafast Flow Quantification With Segmented K-Space Magnetic Resonance Phase Velocity Mapping, Haosen Zhang, Sandra S. Halliburton, James R. Moore, Orlando P. Simonetti, Paulo R. Schvartzman, Richard D. White, George P. Chatzimavroudis

Chemical & Biomedical Engineering Faculty Publications

Magnetic resonance (MR) phase-velocity mapping (PVM) is routinely being used clinically to measure blood flow velocity. Conventional nonsegmented PVM is accurate but relatively slow (3–5 min per measurement). Ultrafast k-space segmented PVM offers much shorter acquisitions (on the order of seconds instead of minutes). The aim of this study was to evaluate the accuracy of segmented PVM in quantifying flow from through-plane velocity measurements. Experiments were performed using four straight tubes (inner diameter of 5.6–26.2 mm), under a variety of steady (1.7–200 ml/s) and pulsatile (6–90 ml/cycle) flow conditions. Two different segmented PVM schemes were …


In Vivo Flow Dynamics Of The Total Cavopulmonary Connection From Three-Dimensional Multislice Magnetic Resonance Imaging, Shiva Sharma, Ann E. Ensley, Katherine Hopkins, George P. Chatzimavroudis, Timothy M. Healy, Vincent K.H. Tam, Kirk R. Kanter, Ajit P. Yoganathan Mar 2001

In Vivo Flow Dynamics Of The Total Cavopulmonary Connection From Three-Dimensional Multislice Magnetic Resonance Imaging, Shiva Sharma, Ann E. Ensley, Katherine Hopkins, George P. Chatzimavroudis, Timothy M. Healy, Vincent K.H. Tam, Kirk R. Kanter, Ajit P. Yoganathan

Chemical & Biomedical Engineering Faculty Publications

Background. The total cavopulmonary connection (TCPC) design continues to be refined on the basis of flow analysis at the connection site. These refinements are of importance for myocardial energy conservation in the univentricular supported circulation. In vivo magnetic resonance phase contrast imaging provides semiquantitative flow visualization information. The purpose of this study was to understand the in vivo TCPC flow characteristics obtained by magnetic resonance phase contrast imaging and compare the results with our previous in vitro TCPC flow experiments in an effort to further refine TCPC surgical design.

Methods. Twelve patients with TCPC underwent sedated three-dimensional, multislice …


Evaluation Of The Precision Of Magnetic Resonance Phase Velocity Mapping For Blood Flow Measurements, George P. Chatzimavroudis, John N. Oshinski, Robert H. Franch, Peter G. Walker, Ajit P. Yoganathan, Roderic I. Pettigrew Jan 2001

Evaluation Of The Precision Of Magnetic Resonance Phase Velocity Mapping For Blood Flow Measurements, George P. Chatzimavroudis, John N. Oshinski, Robert H. Franch, Peter G. Walker, Ajit P. Yoganathan, Roderic I. Pettigrew

Chemical & Biomedical Engineering Faculty Publications

Evaluating the in vivo accuracy of magnetic resonance phase velocity mapping (PVM) is not straightforward because of the absence of a validated clinical flow quantification technique. The aim of this study was to evaluate PVM by investigating its precision, both in vitro and in vivo, in a 1.5 Tesla scanner. In the former case, steady and pulsatile flow experiments were conducted using an aortic model under a variety of flow conditions (steady: 0.1–5.5 L/min; pulsatile: 10–75 mL/cycle). In the latter case, PVM measurements were taken in the ascending aorta of ten subjects, seven of which had aortic regurgitation. Each velocity …


Fluid Mechanic Assessment Of The Total Cavopulmonary Connection Using Magnetic Resonance Phase Velocity Mapping And Digital Particle Image Velocimetry, Ann E. Ensley, Agnès Ramuzat, Timothy M. Healy, George P. Chatzimavroudis, Carol Lucas, Shiva Sharma, Roderic Pettigrew, Ajit P. Yoganathan Oct 2000

Fluid Mechanic Assessment Of The Total Cavopulmonary Connection Using Magnetic Resonance Phase Velocity Mapping And Digital Particle Image Velocimetry, Ann E. Ensley, Agnès Ramuzat, Timothy M. Healy, George P. Chatzimavroudis, Carol Lucas, Shiva Sharma, Roderic Pettigrew, Ajit P. Yoganathan

Chemical & Biomedical Engineering Faculty Publications

The total cavopulmonary connection (TCPC) is currently the most promising modification of the Fontan surgical repair for single ventricle congenital heart disease. The TCPC involves a surgical connection of the superior and inferior vena cavae directly to the left and right pulmonary arteries, bypassing the right heart. In the univentricular system, the ventricle experiences a workload which may be reduced by optimizing the cavae-to-pulmonary anastomosis. The hypothesis of this study was that the energetic efficiency of the connection is a consequence of the fluid dynamics which develop as a function of connection geometry. Magnetic resonance phase velocity mapping (MRPVM) and …


Mri Techniques For Cardiovascular Imaging, Roderic I. Pettigrew, John N. Oshinski, George P. Chatzimavroudis, W. Thomas Dixon Nov 1999

Mri Techniques For Cardiovascular Imaging, Roderic I. Pettigrew, John N. Oshinski, George P. Chatzimavroudis, W. Thomas Dixon

Chemical & Biomedical Engineering Faculty Publications

Over the last several years, cardiovascular MRI has benefited from a number of technical advances which have improved routine clinical imaging techniques. As a result, MRI is now well positioned to realize its longstanding promise of becoming the comprehensive cardiac imaging test of choice in many clinical settings. This may be achieved using a combination of basic advanced techniques. In this overview, the basic cardiac MRI techniques which are clinically useful are reviewed, and the recent technical advances which are clinically promising are described. These advances include routine black blood and cine bright blood techniques that are high speed (slice), …


Toward Designing The Optimal Total Cavopulmonary Connection: An In Vitro Study, Ann E. Ensley, Patricia Lynch, George P. Chatzimavroudis, Carol Lucas, Shiva Sharma, Ajit P. Yoganathan Oct 1999

Toward Designing The Optimal Total Cavopulmonary Connection: An In Vitro Study, Ann E. Ensley, Patricia Lynch, George P. Chatzimavroudis, Carol Lucas, Shiva Sharma, Ajit P. Yoganathan

Chemical & Biomedical Engineering Faculty Publications

Background. Understanding the total cavopulmonary connection (TCPC) hemodynamics may lead to improved surgical procedures which result in a more efficient modified circulation. Reduced energy loss will translate to less work for the single ventricle and although univentricular physiology is complex, this improvement could contribute to improved postoperative outcomes. Therefore to conserve energy, one surgical goal is optimization of the TCPC geometry. In line with this goal, this study investigated whether addition of caval curvature or flaring at the connection conserves energy.

Methods. TCPC models were made varying the curvature of the caval inlet or by flaring the anastomosis. …


Quantification Of Mitral Regurgitation With Mr Phase-Velocity Mapping Using A Control Volume Method, George P. Chatzimavroudis, John N. Oshinski, Roderic I. Pettigrew, Peter G. Walker, Robert H. Franch, Ajit P. Yoganathan May 1998

Quantification Of Mitral Regurgitation With Mr Phase-Velocity Mapping Using A Control Volume Method, George P. Chatzimavroudis, John N. Oshinski, Roderic I. Pettigrew, Peter G. Walker, Robert H. Franch, Ajit P. Yoganathan

Chemical & Biomedical Engineering Faculty Publications

Reliable diagnosis and quantification of mitral regurgitation are important for patient management and for optimizing the time for surgery. Previous methods have often provided suboptimal results. The aim of this in vitro study was to evaluate MR phase-velocity mapping in quantifying the mitral regurgitant volume (MRV) using a control volume (CV) method. A number of contiguous slices were acquired with all three velocity components measured. A CV was then selected, encompassing the regurgitant orifice. Mass conservation dictates that the net inflow into the CV should be equal to the regurgitant flow. Results showed that a CV, the boundary voxels of …


Slice Location Dependence Of Aortic Regurgitation Measurements With Mr Phase Velocity Mapping, George P. Chatzimavroudis, Peter G. Walker, John N. Oshinski, Robert H. Franch, Roderic I. Pettigrew, Ajit P. Yoganathan Apr 1997

Slice Location Dependence Of Aortic Regurgitation Measurements With Mr Phase Velocity Mapping, George P. Chatzimavroudis, Peter G. Walker, John N. Oshinski, Robert H. Franch, Roderic I. Pettigrew, Ajit P. Yoganathan

Chemical & Biomedical Engineering Faculty Publications

Although several methods have been used clinically to assess aortic regurgitation (AR), there is no “gold standard” for regurgitant volume measurement. Magnetic resonance phase velocity mapping (PVM) can be used for noninvasive blood flow measurements. To evaluate the accuracy of PVM in quantifying AR with a single imaging slice in the ascending aorta, in vitro experiments were performed by using a compliant aortic model. Attention was focused on determining the slice location that provided the best results. The most accurate measurements were taken between the aortic valve annulus and the coronary ostia where the measured (Y) and actual …


The Influence Of Acoustic Impedance Mismatch On Post-Stenotic Pulsed-Doppler Ultrasound Measurements In A Coronary Artery Model, S. A. Jones, H. Leclerc, George P. Chatzimavroudis, Y. H. Kim, N. A. Scott, Ajit P. Yoganathan Jan 1996

The Influence Of Acoustic Impedance Mismatch On Post-Stenotic Pulsed-Doppler Ultrasound Measurements In A Coronary Artery Model, S. A. Jones, H. Leclerc, George P. Chatzimavroudis, Y. H. Kim, N. A. Scott, Ajit P. Yoganathan

Chemical & Biomedical Engineering Faculty Publications

Acoustic impedance mismatch at the fluid-wall interface was shown to affect the spectra from an intravascular Doppler device in an in vitro model with a diameter typical of human coronary arteries. Measurements were obtained first under Poiseuille flow conditions with impedance mismatches of 0%, 7% and 12%, and then under stenosed conditions for the 0% and 7% mismatch cases. For the zero mismatch case, the Doppler spectra could be readily interpreted in terms of fluid mechanical phenomena. When mismatch was present, the spectra from Poiseuille flow exhibited multiple peaks which could not be directly related to the velocity profile. Also, …