Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Devices and Instrumentation

Dissertations, Master's Theses and Master's Reports

Theses/Dissertations

2018

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Studying Mass And Mechanical Property Changes During The Degradation Of A Bioadhesive With Mass Tracking, Rheology And Magnetoelastic (Me) Sensors, Zhongtian Zhang Jan 2018

Studying Mass And Mechanical Property Changes During The Degradation Of A Bioadhesive With Mass Tracking, Rheology And Magnetoelastic (Me) Sensors, Zhongtian Zhang

Dissertations, Master's Theses and Master's Reports

In this research, the degradable polymer 4-arm poly (ethylene glycol)-glutaric acid-dopamine (PEG-GA-DM4) was synthesized. The degradation behavior of crosslinked PEG-GA-DM4 bioadhesive was studied with mass tracking, oscillatory rheology, and magnetoelastic (ME) sensors. Changes in mechanical properties were correlated with both dry mass and wet mass changes during the degradation. The results indicate that the loss of mechanical property in the bioadhesive can take place without losing the dry mass. The mass loss profile cannot describe the degradation behavior completely. In addition to studying the degradation of PEG-GA-DM4, this research also confirms the application of ME …


A Bluetooth Low-Energy Wireless Sensor Platform For Continuous Monitoring Of A Bioreactor Environment During Cell Manufacturing, Brad Nelson Jan 2018

A Bluetooth Low-Energy Wireless Sensor Platform For Continuous Monitoring Of A Bioreactor Environment During Cell Manufacturing, Brad Nelson

Dissertations, Master's Theses and Master's Reports

A wireless sensor platform based on Bluetooth Low-Energy (BLE) technology was designed and prototyped for continuous monitoring of physical conditions and chemical analytes, which could be applied to bioreactors during the cell manufacturing process. Controlling environmental conditions such as pH, oxygen, glucose, temperature, and pressure is vital to ensure the consistency of the manufactured cells and maintain the potency of the product. Current methods to control bioreactor conditions focus only on monitoring the cell culture environment during cell growth, but there is a lack of direct quantification of cell properties to provide an integrated feedback system that can also maintain …