Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 61 - 68 of 68

Full-Text Articles in Engineering

Catalytic Tri-Reforming Of Biomass-Derived Syngas To Produce Desired H2:Co Ratios For Fuel Applications, Devin Mason Walker Jan 2012

Catalytic Tri-Reforming Of Biomass-Derived Syngas To Produce Desired H2:Co Ratios For Fuel Applications, Devin Mason Walker

USF Tampa Graduate Theses and Dissertations

This study focuses on upgrading biomass derived syngas for the synthesis of liquid fuels using Fischer-Tropsch synthesis (FTS). The process includes novel gasification of biomass via a tri-reforming process which involves a synergetic combination of CO2 reforming, steam reforming, and partial oxidation of methane. Typical biomass-derived syngas H2:CO is 1:1 and contains tars that deactivate FT catalyst. This innovation allows for cost-effective one-step production of syngas in the required H2:CO of 2:1 with reduction of tars for use in the FTS. To maximize the performance of the tri-reforming catalyst, an attempt to control oxygen mobility, thermal stability, dispersion of metal, …


The Electronic Structure Of Biomolecular Self-Assembled Monolayers, Matthaeus Anton Wolak Jan 2012

The Electronic Structure Of Biomolecular Self-Assembled Monolayers, Matthaeus Anton Wolak

USF Tampa Graduate Theses and Dissertations

The studies presented here address the characterization of the electronic structure of various self-assembled monolayers (SAMs) of peptide nucleic acid (PNA) and tetraphenylporphyrin (TPP) SAMs and arrays, formed on gold substrates.

PNA is a promising alternative to DNA for bio-sensing applications, as well as for strategies for self-assembly based on nucleic acid hybridization. In recent years charge transfer through PNA molecules was a focus of research due to possible applications in self-assembled molecular circuits and molecular tools. In light of this research it is interesting to investigate the electronic structure of PNA interfaces to gold, a potential electrode material.

TPP …


Effects Of Random Cross-Sectioned Distributions, Fiber Misalignment And Interphases In Three-Dimensional Composite Models On Transverse Shear Modulus, Jarrett Zitko Jan 2012

Effects Of Random Cross-Sectioned Distributions, Fiber Misalignment And Interphases In Three-Dimensional Composite Models On Transverse Shear Modulus, Jarrett Zitko

USF Tampa Graduate Theses and Dissertations

Finite element analysis was implemented to evaluate the transverse shear modulus of a unidirectional glass/epoxy fiber-matrix composite based on pure shear displacement boundary conditions. Unit cells consisting of three-dimensional glass cylinders surrounded in square-cuboid epoxy matrices were modeled to represent "Representative Volume Element" (RVE) configurations in periodic and random-periodic square cell arrangements of variable size. Three RVEs were constructed and analyzed: A single unit cell, a 9-cell (3 x 3) array, and a 25-cell (5 x 5) array. Additionally, the unit cell was modeled to include an interphase. Three sets of cell arrangements were constructed and evaluated: a periodic square …


Direct Verification Of The Locking Of Liquid Locking Compounds In Threaded Fasteners, Ryan Hunter Jan 2012

Direct Verification Of The Locking Of Liquid Locking Compounds In Threaded Fasteners, Ryan Hunter

USF Tampa Graduate Theses and Dissertations

The motivation of this research is to explore the viability of a method to directly verify whether or not an anaerobic adhesive within a threaded fastener assembly has cured sufficiently to provide secondary locking. Direct verification was implemented via the application of a test torque in the loosening direction of a fastener assembly with Loctite (given a 24 hour cure time). A three phase test plan was developed with the intent of identifying and utilizing this verification torque value which is unique to a given fastener assembly.

It was proved that the direct verification method, as outlined in the test …


Design Of Contact Line Friction Measurement Machine Apparatus, Seyed Kamran Najafi Jan 2012

Design Of Contact Line Friction Measurement Machine Apparatus, Seyed Kamran Najafi

USF Tampa Graduate Theses and Dissertations

The purpose of this project is to design and manufacture a high precision machine to directly measure the surface force of fluids. Knowing how to move droplets easier with less resistance can increase the potential of a wide range of applications and improve the performance of things such as self-assembly applications. This machine has the ability to measure forces of up to 100 N with a MEMS based sensor. The motion system on this machine moves a substrate underneath of a droplet for 100 mm and applies dragging force to the sensor. It moves with a controlled speed with high …


Encapsulation Of High Temperature Phase Change Materials For Thermal Energy Storage, Rupa Nath Jan 2012

Encapsulation Of High Temperature Phase Change Materials For Thermal Energy Storage, Rupa Nath

USF Tampa Graduate Theses and Dissertations

Thermal energy storage is a major contributor to bridge the gap between energy demand (consumption) and energy production (supply) by concentrating solar power. The utilization of high latent heat storage capability of phase change materials is one of the keys to an efficient way to store thermal energy. However, some of the limitations of the existing technology are the high volumetric expansion and low thermal conductivity of phase change materials (PCMs), low energy density, low operation temperatures and high cost. The present work deals with encapsulated PCM system, which operates at temperatures above 500°C and takes advantage of the heat …


Optimization Of Bio-Impedance Sensor For Enhanced Detection And Characterization Of Adherent Cells, Dorielle T. Price Jan 2012

Optimization Of Bio-Impedance Sensor For Enhanced Detection And Characterization Of Adherent Cells, Dorielle T. Price

USF Tampa Graduate Theses and Dissertations

This research focuses on the detection and characterization of cells using

impedance-based techniques to understand the behavior and response of cells to internal/environmental changes. In combination with impedimetric sensing techniques, the biosensors in this work allow rapid, label-free, quantitative measurements and are very sensitive to changes in environment and cell morphology. The biosensor design and measurement setup is optimized to detect and differentiate cancer cells and healthy (normal) cells. The outcome of this work will provide a foundation for enhanced 3-dimensional tumor analysis and characterization; thus creating an avenue for earlier cancer detection and reduced healthcare costs.

The magnitude of …


Smart Packaging: A Novel Technique For Localized Drug Delivery For Ovarian Cancer, Eva Christabel Williams Jan 2012

Smart Packaging: A Novel Technique For Localized Drug Delivery For Ovarian Cancer, Eva Christabel Williams

USF Tampa Graduate Theses and Dissertations

Localized drug delivery is emerging as an effective technique due to its ability to administer therapeutic concentrations and controlled release of drugs to cancer sites in the body. It also prevents the contact of harsh chemotherapy drugs to healthy regions in the body that otherwise would become exposed to current treatments.

This study reports on a model chemotherapy drug delivery system comprising non-ionic surfactant vesicles (niosomes) packaged within a temperature-sensitive chitosan network. This smart packaging, or package-within-a package system, provides two distinct advantages. First, the gel prevents circulation of the niosomes and maintains delivery in the vicinity of a tumor. …