Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Robust Distributed Scheduling Via Time Period Aggregation, Shih-Fen Cheng, John Tajan, Hoong Chuin Lau Dec 2015

Robust Distributed Scheduling Via Time Period Aggregation, Shih-Fen Cheng, John Tajan, Hoong Chuin Lau

Shih-Fen Cheng

In this paper, we evaluate whether the robustness of a market mechanism that allocates complementary resources could be improved through the aggregation of time periods in which resources are consumed. In particular, we study a multi-round combinatorial auction that is built on a general equilibrium framework. We adopt the general equilibrium framework and the particular combinatorial auction design from the literature, and we investigate the benefits and the limitation of time-period aggregation when demand-side uncertainties are introduced. By using simulation experiments on a real-life resource allocation problem from a container port, we show that, under stochastic conditions, the performance variation …


Robust Distributed Scheduling Via Time Period Aggregation, Shih-Fen Cheng, John Tajan, Hoong Chuin Lau Dec 2015

Robust Distributed Scheduling Via Time Period Aggregation, Shih-Fen Cheng, John Tajan, Hoong Chuin Lau

Shih-Fen Cheng

In this paper, we evaluate whether the robustness of a market mechanism that allocates complementary resources could be improved through the aggregation of time periods in which resources are consumed. In particular, we study a multi-round combinatorial auction that is built on a general equilibrium framework. We adopt the general equilibrium framework and the particular combinatorial auction design from the literature, and we investigate the benefits and the limitation of time-period aggregation when demand-side uncertainties are introduced. By using simulation experiments on a real-life resource allocation problem from a container port, we show that, under stochastic conditions, the performance variation …


Robust Distributed Scheduling Via Time Period Aggregation, Shih-Fen Cheng, John Tajan, Hoong Chuin Lau Dec 2015

Robust Distributed Scheduling Via Time Period Aggregation, Shih-Fen Cheng, John Tajan, Hoong Chuin Lau

Shih-Fen CHENG

In this paper, we evaluate whether the robustness of a market mechanism that allocates complementary resources could be improved through the aggregation of time periods in which resources are consumed. In particular, we study a multi-round combinatorial auction that is built on a general equilibrium framework. We adopt the general equilibrium framework and the particular combinatorial auction design from the literature, and we investigate the benefits and the limitation of time-period aggregation when demand-side uncertainties are introduced. By using simulation experiments on a real-life resource allocation problem from a container port, we show that, under stochastic conditions, the performance variation …


Towards Real-Time, On-Board, Hardware-Supported Sensor And Software Health Management For Unmanned Aerial Systems, Johann M. Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, Corey Ippolito Jun 2015

Towards Real-Time, On-Board, Hardware-Supported Sensor And Software Health Management For Unmanned Aerial Systems, Johann M. Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, Corey Ippolito

Ole J Mengshoel

For unmanned aerial systems (UAS) to be successfully deployed and integrated within the national airspace, it is imperative that they possess the capability to effectively complete their missions without compromising the safety of other aircraft, as well as persons and property on the ground. This necessity creates a natural requirement for UAS that can respond to uncertain environmental conditions and emergent failures in real-time, with robustness and resilience close enough to those of manned systems. We introduce a system that meets this requirement with the design of a real-time onboard system health management (SHM) capability to continuously monitor sensors, software, …