Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 88

Full-Text Articles in Engineering

Direct Neighbor Search, Jilian Zhang, Kyriakos Mouratidis, Hwee Hwa Pang Jun 2014

Direct Neighbor Search, Jilian Zhang, Kyriakos Mouratidis, Hwee Hwa Pang

Kyriakos MOURATIDIS

In this paper we study a novel query type, called direct neighbor query. Two objects in a dataset are direct neighbors (DNs) if a window selection may exclusively retrieve these two objects. Given a source object, a DN search computes all of its direct neighbors in the dataset. The DNs define a new type of affinity that differs from existing formulations (e.g., nearest neighbors, nearest surrounders, reverse nearest neighbors, etc.) and finds application in domains where user interests are expressed in the form of windows, i.e., multi-attribute range selections. Drawing on key properties of the DN relationship, we develop an …


Budgeted Personalized Incentive Approaches For Smoothing Congestion In Resource Networks, Pradeep Varakantham, Na Fu, William Yeoh, Shih-Fen Cheng, Hoong Chuin Lau Jun 2014

Budgeted Personalized Incentive Approaches For Smoothing Congestion In Resource Networks, Pradeep Varakantham, Na Fu, William Yeoh, Shih-Fen Cheng, Hoong Chuin Lau

Shih-Fen CHENG

Congestion occurs when there is competition for resources by sel sh agents. In this paper, we are concerned with smoothing out congestion in a network of resources by using personalized well-timed in- centives that are subject to budget constraints. To that end, we provide: (i) a mathematical formulation that computes equilibrium for the re- source sharing congestion game with incentives and budget constraints; (ii) an integrated approach that scales to larger problems by exploiting the factored network structure and approximating the attained equilib- rium; (iii) an iterative best response algorithm for solving the uncon- strained version (no budget) of the …


Multi-Agent Orienteering Problem With Time-Dependent Capacity Constraints, Cen Chen, Shih-Fen Cheng, Hoong Chuin Lau Jun 2014

Multi-Agent Orienteering Problem With Time-Dependent Capacity Constraints, Cen Chen, Shih-Fen Cheng, Hoong Chuin Lau

Shih-Fen CHENG

The Orienteering Problem (OP), as originally defined by Tsiligirides, is the problem of cross-countr sport in which participants get rewards from visiting a predefined set of checkpoints. As Orienteering Problem can be used to describe a wide variety of real-world problems like route planning for facility inspection, patrolling of strategic location, and reward-weighted traveling salesman problem, it has attracted continuous interests from researchers and a large number of variants and corresponding algorithms for solving them have been introduced.


A Multi-Objective Memetic Algorithm For Vehicle Resource Allocation In Sustainable Transportation Planning, Hoong Chuin Lau, Lucas Agussurja, Shih-Fen Cheng, Pang Jin Tan Jun 2014

A Multi-Objective Memetic Algorithm For Vehicle Resource Allocation In Sustainable Transportation Planning, Hoong Chuin Lau, Lucas Agussurja, Shih-Fen Cheng, Pang Jin Tan

Shih-Fen CHENG

Sustainable supply chain management has been an increasingly important topic of research in recent years. At the strategic level, there are computational models which study supply and distribution networks with environmental considerations. At the operational level, there are, for example, routing and scheduling models which are constrained by carbon emissions. Our paper explores work in tactical planning with regards to vehicle resource allocation from distribution centers to customer locations in a multi-echelon logistics network. We formulate the bi-objective optimization problem exactly and design a memetic algorithm to efficiently derive an approximate Pareto front. We illustrate the applicability of our approach …


An Agent-Based Simulation Approach To Experience Management In Theme Parks, Shih-Fen Cheng, Larry Junjie Lin, Jiali Du, Hoong Chuin Lau, Pradeep Reddy Varakantham Jun 2014

An Agent-Based Simulation Approach To Experience Management In Theme Parks, Shih-Fen Cheng, Larry Junjie Lin, Jiali Du, Hoong Chuin Lau, Pradeep Reddy Varakantham

Shih-Fen CHENG

In this paper, we illustrate how massive agent-based simulation can be used to investigate an exciting new application domain of experience management in theme parks, which covers topics like congestion control, incentive design, and revenue management. Since all visitors are heterogeneous and self-interested, we argue that a high-quality agent-based simulation is necessary for studying various problems related to experience management. As in most agent-base simulations, a sound understanding of micro-level behaviors is essential to construct high-quality models. To achieve this, we designed and conducted a first-of-its-kind real-world experiment that helps us understand how typical visitors behave in a theme-park environment. …


Interacting Knapsack Problem In Designing Resource Bundles, Truong Huy D. Nguyen, Pradeep Reddy Varakantham, Hoong Chuin Lau, Shih-Fen Cheng Jun 2014

Interacting Knapsack Problem In Designing Resource Bundles, Truong Huy D. Nguyen, Pradeep Reddy Varakantham, Hoong Chuin Lau, Shih-Fen Cheng

Shih-Fen CHENG

In many real-life businesses, the service provider/seller keeps a log of the visitors’ behavior as a way to assess the efficiency of the current business/operation model and find room for improvement. For example, by tracking when visitors entering attractions in a theme park, theme park owners can detect when and where congestion may occur, thus having contingency plans to reroute the visitors accordingly. Similarly, a Cable TV service provider can track channel switching events at each household to identify uninteresting channels. Subsequently, the repertoire of channels up for subscription can evolve over time to better serve the entertainment demand of …


Update On The Operating Software For Openorbiter, Dayln Limesand, Christoffer Korvald, Jeremy Straub, Ronald Marsh Apr 2014

Update On The Operating Software For Openorbiter, Dayln Limesand, Christoffer Korvald, Jeremy Straub, Ronald Marsh

Jeremy Straub

The operating software team of the OpenOrbiter project has been tasked with developing software for general spacecraft maintenance, performing mission tasks and the monitoring of system critical aspects of the spacecraft. To do so, the team is developing an autonomous system that will be able to continuously check sensors for data, and schedule tasks that pertain to the current mission and general maintenance of the onboard systems. Development in support of these objectives is ongoing with work focusing on the completion of the development of a stable system. This poster presents an overview of current work on the project and …


The Use Of The Blackboard Architecture For A Decision Making System For The Control Of Craft With Various Actuator And Movement Capabilities, Jeremy Straub, Hassan Reza Mar 2014

The Use Of The Blackboard Architecture For A Decision Making System For The Control Of Craft With Various Actuator And Movement Capabilities, Jeremy Straub, Hassan Reza

Jeremy Straub

This paper provides an overview of an approach to the control of multiple craft with heterogeneous movement and actuation characteristics that is based on the Blackboard software architecture. An overview of the Blackboard architecture is provided. Then, the operational and mission requirements that dictate the need for autonomous control are characterized and the utility of the Blackboard architecture is for meeting these requirements is discussed. The performance of a best-path solver and naïve solver are compared. The results demonstrate that the best-path solver outperforms the naïve solver in the amount of time taken to generate a solution; however, the number …


Openorbiter Operating Software, Dayln Limesand, Christoffer Korvald, Jeremy Straub, Ronald Marsh Mar 2014

Openorbiter Operating Software, Dayln Limesand, Christoffer Korvald, Jeremy Straub, Ronald Marsh

Jeremy Straub

The operating software team of the OpenOrbiter project has been tasked with developing software for general spacecraft maintenance, performing mission tasks and the monitoring of system critical aspects of the spacecraft. To do so, the team is developing an autonomous system that will be able to continuously check sensors for data, and schedule tasks that pertain to the current mission and general maintenance of the onboard systems. Development in support of these objectives is ongoing with work focusing on the completion of the development of a stable system. This poster will present an overview of current work on the project …


The Design Of The Open Prototype For Educational Nanosats, Jeremy Straub Dec 2013

The Design Of The Open Prototype For Educational Nanosats, Jeremy Straub

Jeremy Straub

No abstract provided.


Scheduling For A Small Satellite For Remote Sensed Data Collection, Donovan Torgerson, Christoffer Korvalnd, Jeremy Straub, Ronald Marsh Dec 2013

Scheduling For A Small Satellite For Remote Sensed Data Collection, Donovan Torgerson, Christoffer Korvalnd, Jeremy Straub, Ronald Marsh

Jeremy Straub

Small satellites, such as CubeSats, serve as excellent platforms for the collection of data that can be supplied to a geographic information system. To serve this need, they require a robust and lightweight task scheduler due to their limited onboard power production capabilities as well as internal space restrictions. Because of these constraints, schedules must be optimized; however, the scheduling optimization process must be performed using limited processing (CPU) power.

Several considerations must be taken into account in order to make a scheduler for these systems. This poster highlights requirements such as inter-dependency of onboard systems, and limited windows of …


Roofsat: Teaching Students Skills For Software Development For Gis Data Collection And Other Activities, Jeremy Straub, Ronald Marsh, Donovan Torgerson, Christoffer Korvald Dec 2013

Roofsat: Teaching Students Skills For Software Development For Gis Data Collection And Other Activities, Jeremy Straub, Ronald Marsh, Donovan Torgerson, Christoffer Korvald

Jeremy Straub

Small Spacecraft provide an excellent platform for the collection of geospatial data. In order to enable the low-cost creation of small remote sensing space-craft in a university environment, a training pathway for students is required. The Realistic Operational Ob-ject for Facilitating Software Assessment and Testing (RoofSat) serves to provide students with experience developing software for a small satellite platform typi-cal of those used for remote sensing missions. It al-lows software to be tested with hardware that re-sponds in a similar manner to that found on the satel-lite for a fraction of the cost of development. This poster details the goals …


Characterization Of Extended And Simplified Intelligent Water Drop (Siwd) Approaches And Their Comparison To The Intelligent Water Drop (Iwd) Approach, Jeremy Straub, Eunjin Kim Nov 2013

Characterization Of Extended And Simplified Intelligent Water Drop (Siwd) Approaches And Their Comparison To The Intelligent Water Drop (Iwd) Approach, Jeremy Straub, Eunjin Kim

Jeremy Straub

This paper presents a simplified approach to performing the Intelligent Water Drops (IWD) process. This approach is designed to be comparatively lightweight while approximating the results of the full IWD process. The Simplified Intelligent Water Drops (SIWD) approach is specifically designed for applications where IWD must be run in a computationally limited environment (such as on a robot, UAV or small spacecraft) or where performance speed must be maximized for time sensitive applications. The SWID approach is described and compared and contracted to the base IWD approach.


Towards Real-Time, On-Board, Hardware-Supported Sensor And Software Health Management For Unmanned Aerial Systems, Johann Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, Corey Ippolito Sep 2013

Towards Real-Time, On-Board, Hardware-Supported Sensor And Software Health Management For Unmanned Aerial Systems, Johann Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, Corey Ippolito

Ole J Mengshoel

Unmanned aerial systems (UASs) can only be deployed if they can effectively complete their missions and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. In this paper, we design a real-time, on-board system health management (SHM) capability to continuously monitor sensors, software, and hardware components for detection and diagnosis of failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and/or software signals; (2) signal analysis, preprocessing, and …


Optimizing Parallel Belief Propagation In Junction Trees Using Regression, Lu Zheng, Ole J. Mengshoel Jul 2013

Optimizing Parallel Belief Propagation In Junction Trees Using Regression, Lu Zheng, Ole J. Mengshoel

Ole J Mengshoel

The junction tree approach, with applications in artificial intelligence, computer vision, machine learning, and statistics, is often used for computing posterior distributions in probabilistic graphical models. One of the key challenges associated with junction trees is computational, and several parallel computing technologies - including many-core processors - have been investigated to meet this challenge. Many-core processors (including GPUs) are now programmable, unfortunately their complexities make it hard to manually tune their parameters in order to optimize software performance. In this paper, we investigate a machine learning approach to minimize the execution time of parallel junction tree algorithms implemented on a …


Exploring Multiple Dimensions Of Parallelism In Junction Tree Message Passing, Lu Zheng, Ole J. Mengshoel Jun 2013

Exploring Multiple Dimensions Of Parallelism In Junction Tree Message Passing, Lu Zheng, Ole J. Mengshoel

Ole J Mengshoel

Belief propagation over junction trees is known to be computationally challenging in the general case. One way of addressing this computational challenge is to use node-level parallel computing, and parallelize the computation associated with each separator potential table cell. However, this approach is not efficient for junction trees that mainly contain small separators. In this paper, we analyze this problem, and address it by studying a new dimension of node-level parallelism, namely arithmetic parallelism. In addition, on the graph level, we use a clique merging technique to further adapt junction trees to parallel computing platforms. We apply our parallel approach …


The Multi-Tier Mission Architecture And A Different Approach To Entry, Descent And Landing, Jeremy Straub Jun 2013

The Multi-Tier Mission Architecture And A Different Approach To Entry, Descent And Landing, Jeremy Straub

Jeremy Straub

Planetary missions are generally very well planned out. Where the spacecraft will be deployed, what it will do there and in what order are generally determined before launch. While some allowance is made for greater depth exploration of scientifically interesting items identified during the investigation, a successful mission is (generally) one that doesn’t deviate significantly from its planning. When sending an initial mission to an unsurveyed planet or moon, however, this approach is not suitable. Current space technology provides the capability to send a combined survey and lander mission (instead of conducting an initial survey mission and following it up …


Enabling Interplanetary Small Spacecraft Science Missions With Model Based Data Analysis, Jeremy Straub Jun 2013

Enabling Interplanetary Small Spacecraft Science Missions With Model Based Data Analysis, Jeremy Straub

Jeremy Straub

Small spacecraft operating outside of Earth orbit are significantly constrained by the communica- tions link available to them. This is particularly true for stand-alone craft that must rely on their own antenna and transmission systems (for which gain and available power generation are limited by form factor); it is also applicable to ‘hitchhiker’-style missions which may be able to utilize (quite likely very limited amounts of) time on the primary spacecraft’s communications equip- ment for long-haul transmission.

This poster presents the adaptation of the Model-Based Transmission Reduction (MBTR) frame- work’s Model-Based Data Analysis (MBDA) component for use on an interplanetary …


Mobile Computing: Challenges And Opportunities For Autonomy And Feedback, Ole J. Mengshoel, Bob Iannucci, Abe Ishihara May 2013

Mobile Computing: Challenges And Opportunities For Autonomy And Feedback, Ole J. Mengshoel, Bob Iannucci, Abe Ishihara

Ole J Mengshoel

Mobile devices have evolved to become computing platforms more similar to desktops and workstations than the cell phones and handsets of yesteryear. Unfortunately, today’s mobile infrastructures are mirrors of the wired past. Devices, apps, and networks impact one another, but a systematic approach for allowing them to cooperate is currently missing. We propose an approach that seeks to open key interfaces and to apply feedback and autonomic computing to improve both user experience and mobile system dynamics.


Software Health Management With Bayesian Networks, Johann Schumann, Timmy Mbaya, Ole J. Mengshoel, Knot Pipatsrisawat, Ashok Srivastava, Arthur Choi, Adnan Darwiche May 2013

Software Health Management With Bayesian Networks, Johann Schumann, Timmy Mbaya, Ole J. Mengshoel, Knot Pipatsrisawat, Ashok Srivastava, Arthur Choi, Adnan Darwiche

Ole J Mengshoel

Software Health Management (SWHM) is an emerging field which addresses the critical need to detect, diagnose, predict, and mitigate adverse events due to software faults and failures. These faults could arise for numerous reasons including coding errors, unanticipated faults or failures in hardware, or problematic interactions with the external environment. This paper demonstrates a novel approach to software health management based on a rigorous Bayesian formulation that monitors the behavior of software and operating system, performs probabilistic diagnosis, and provides information about the most likely root causes of a failure or software problem. Translation of the Bayesian network model into …


Uncertain Congestion Games With Assorted Human Agent Populations, Asrar Ahmed, Pradeep Reddy Varakantham, Shih-Fen Cheng May 2013

Uncertain Congestion Games With Assorted Human Agent Populations, Asrar Ahmed, Pradeep Reddy Varakantham, Shih-Fen Cheng

Shih-Fen CHENG

Congestion games model a wide variety of real-world resource congestion problems, such as selfish network routing, traffic route guidance in congested areas, taxi fleet optimization and crowd movement in busy areas. However, existing research in congestion games assumes: (a) deterministic movement of agents between resources; and (b) perfect rationality (i.e. maximizing their own expected value) of all agents. Such assumptions are not reasonable in dynamic domains where decision support has to be provided to humans. For instance, in optimizing the performance of a taxi fleet serving a city, movement of taxis can be involuntary or nondeterministic (decided by the specific …


Decentralized Decision Support For An Agent Population In Dynamic And Uncertain Domains, Pradeep Reddy Varakantham, Shih-Fen Cheng, Thi Duong Nguyen May 2013

Decentralized Decision Support For An Agent Population In Dynamic And Uncertain Domains, Pradeep Reddy Varakantham, Shih-Fen Cheng, Thi Duong Nguyen

Shih-Fen CHENG

This research is motivated by problems in urban transportation and labor mobility, where the agent flow is dynamic, non-deterministic and on a large scale. In such domains, even though the individual agents do not have an identity of their own and do not explicitly impact other agents, they have implicit interactions with other agents. While there has been much research in handling such implicit effects, it has primarily assumed controlled movements of agents in static environments. We address the issue of decision support for individual agents having involuntary movements in dynamic environments . For instance, in a taxi fleet serving …


Lagrangian Relaxation For Large-Scale Multi-Agent Planning, Geoff Gordon, Pradeep Varakantham, William Yeoh, Hoong Chuin Lau, Shih-Fen Cheng May 2013

Lagrangian Relaxation For Large-Scale Multi-Agent Planning, Geoff Gordon, Pradeep Varakantham, William Yeoh, Hoong Chuin Lau, Shih-Fen Cheng

Shih-Fen Cheng

Multi-agent planning is a well-studied problem with various applications including disaster rescue, urban transportation and logistics, both for autonomous agents and for decision support to humans. Due to computational constraints, existing research typically focuses on one of two scenarios: unstructured domains with many agents where we are content with heuristic solutions, or domains with small numbers of agents or special structure where we can provide provably near-optimal solutions. By contrast, in this paper, we focus on providing provably near-optimal solutions for domains with large numbers of agents, by exploiting a common domain-general property: if individual agents each have limited influence …


Lagrangian Relaxation For Large-Scale Multi-Agent Planning, Geoff Gordon, Pradeep Reddy Varakantham, William Yeoh, Ajay Srinivasan, Hoong Chuin Lau, Shih-Fen Cheng May 2013

Lagrangian Relaxation For Large-Scale Multi-Agent Planning, Geoff Gordon, Pradeep Reddy Varakantham, William Yeoh, Ajay Srinivasan, Hoong Chuin Lau, Shih-Fen Cheng

Shih-Fen CHENG

Multi-agent planning is a well-studied problem with applications in various areas. Due to computational constraints, existing research typically focuses either on unstructured domains with many agents, where we are content with heuristic solutions, or domains with small numbers of agents or special structure, where we can find provably near-optimal solutions. In contrast, here we focus on provably near-optimal solutions in domains with many agents, by exploiting influence limits. To that end, we make two key contributions: (a) an algorithm, based on Lagrangian relaxation and randomized rounding, for solving multi-agent planning problems represented as large mixed-integer programs; (b) a proof of …


Notes On Equilibria In Symmetric Games, Shih-Fen Cheng, Daniel M. Reeves, Yevgeniy Vorobeychik, Michael P. Wellman May 2013

Notes On Equilibria In Symmetric Games, Shih-Fen Cheng, Daniel M. Reeves, Yevgeniy Vorobeychik, Michael P. Wellman

Shih-Fen CHENG

In a symmetric game, every player is identical with respect to the game rules. We show that a symmetric 2strategy game must have a pure-strategy Nash equilibrium. We also discuss Nash’s original paper and its generalized notion of symmetry in games. As a special case of Nash’s theorem, any finite symmetric game has a symmetric Nash equilibrium. Furthermore, symmetric infinite games with compact, convex strategy spaces and continuous, quasiconcave utility functions have symmetric pure-strategy Nash equilibria. Finally, we discuss how to exploit symmetry for more efficient methods of finding Nash equilibria.


Distributing Complementary Resources Across Multiple Periods With Stochastic Demand, Shih-Fen Cheng, John Tajan, Hoong Chuin Lau May 2013

Distributing Complementary Resources Across Multiple Periods With Stochastic Demand, Shih-Fen Cheng, John Tajan, Hoong Chuin Lau

Shih-Fen CHENG

In this paper, we evaluate whether the robustness of a market mechanism that allocates complementary resources could be improved through the aggregation of time periods in which resources are consumed. In particular, we study a multi-round combinatorial auction that is built on a general equilibrium framework. We adopt the general equilibrium framework and the particular combinatorial auction design from the literature, and we investigate the benefits and the limitation of time-period aggregation when demand-side uncertainties are introduced. By using simulation experiments, we show that under stochastic conditions the performance variation of the process decreases as the time frame length (time …


Designing The Market Game For A Commodity Trading Simulation, Shih-Fen Cheng May 2013

Designing The Market Game For A Commodity Trading Simulation, Shih-Fen Cheng

Shih-Fen CHENG

In this paper, we propose to design a market game that (a) can be used in modeling and studying commodity trading scenarios, and (b) can be used in capturing human traders' behaviors. Specifically, we demonstrate the usefulness of this commodity trading game in a single-commodity futures trading scenario. A pilot experiment was run with a mixture of human traders and an autonomous agent that emulates the aggregatedmarket condition, with the assumption that this autonomous agent would hint each of its action through a public announcement. We show that the information collected from this simulation can be used to extract the …


Decision Support For Assorted Populations In Uncertain And Congested Environments, Pradeep Reddy Varakantham, Asrar Ahmed, Shih-Fen Cheng May 2013

Decision Support For Assorted Populations In Uncertain And Congested Environments, Pradeep Reddy Varakantham, Asrar Ahmed, Shih-Fen Cheng

Shih-Fen Cheng

This research is motivated by large scale problems in urban transportation and labor mobility where there is congestion for resources and uncertainty in movement. In such domains, even though the individual agents do not have an identity of their own and do not explicitly interact with other agents, they effect other agents. While there has been much research in handling such implicit effects, it has primarily assumed deterministic movements of agents. We address the issue of decision support for individual agents that are identical and have involuntary movements in dynamic environments. For instance, in a taxi fleet serving a city, …


An Analysis Of Extreme Price Shocks And Illiquidity Among Trend Followers, Bernard Lee, Shih-Fen Cheng, Annie Koh May 2013

An Analysis Of Extreme Price Shocks And Illiquidity Among Trend Followers, Bernard Lee, Shih-Fen Cheng, Annie Koh

Shih-Fen CHENG

We construct an agent-based model to study the interplay between extreme price shocks and illiquidity in the presence of systematic traders known as trend followers. The agent-based approach is particularly attractive in modeling commodity markets because the approach allows for the explicit modeling of production, capacities, and storage constraints. Our study begins by using the price stream from a market simulation involving human participants and studies the behavior of various trend-following strategies, assuming initially that their participation will not impact the market. We notice an incremental deterioration in strategy performance as and when strategies deviate further and further from the …


A Mechanism For Organizing Last-Mile Service Using Non-Dedicated Fleet, Shih-Fen Cheng, Duc Thien Nguyen, Hoong Chuin Lau May 2013

A Mechanism For Organizing Last-Mile Service Using Non-Dedicated Fleet, Shih-Fen Cheng, Duc Thien Nguyen, Hoong Chuin Lau

Shih-Fen CHENG

Unprecedented pace of urbanization and rising income levels have fueled the growth of car ownership in almost all newly formed megacities. Such growth has congested the limited road space and significantly affected the quality of life in these megacities. Convincing residents to give up their cars and use public transport is the most effective way in reducing congestion; however, even with sufficient public transport capacity, the lack of last-mile (from the transport hub to the destination) travel services is the major deterrent for the adoption of public transport. Due to the dynamic nature of such travel demands, fixed-size fleets will …