Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Nasa Student Launch - Payload, Eli Kirk Jan 2023

Nasa Student Launch - Payload, Eli Kirk

All Undergraduate Projects

A team of mechanical engineering, physics, and computer science students from Central Washington University have constructed a fully functional subscale model rocket to be flown at the NASA Student Launch competition. The rocket’s payload was designed to open the nose cone and take a photo of the rocket’s surroundings after descending from the launch. Smaller parts were constructed through machining and 3D printing that will be added to the purchased major component, the linear actuator, in order to perform the required tasks. These tasks are signaled by an attached electronics board, which will receive an RF command remotely, execute code, …


Autonomous Payload Design With Systems Engineering, Michael Downs, Christopher James Liebhart 2nd Jan 2022

Autonomous Payload Design With Systems Engineering, Michael Downs, Christopher James Liebhart 2nd

Williams Honors College, Honors Research Projects

The design will be an autonomous payload consisting of auto deployment of a drone running an autonomous mission of mapping the terrain around a grounded rocket. The project is part of the Akronauts payload project for the 2022 Spaceport competition. It will include the development of a ground station for monitoring and controlling the drone and the transfer of live data to the station and a computer on board the rocket. The project will aim to use system engineering techniques to accomplish this in the hope of providing documentation and thus insight into the best way to develop a multi-disciplinary …


Educating The Space Scientists At Embry-Riddle Through Design, Build And Fly Rocketry Experience, Pedro Llanos, Robert E. Haley, Sathya Gangadharan Jan 2019

Educating The Space Scientists At Embry-Riddle Through Design, Build And Fly Rocketry Experience, Pedro Llanos, Robert E. Haley, Sathya Gangadharan

Pedro J. Llanos (www.AstronauticsLlanos.com)

Practical experience for students in rockets and payloads is very valuable in the space industry, and it is something that would give them an advantage over other applicants. Students in Embry-Riddle Aeronautical University’s Payload and Integration class were given the opportunity to build a level 1 rocket and gain experience developing, testing, and integrating payloads into a rocket. The students were given the tasks to come up with an idea for a payload, design the payload to fit within the rocket for flight, and assemble and launch the rocket with the payload in the payload bay. The tasks required for …


The Use Of 3d Printing To Enable High Altitude Balloon Missions, Jeremy Straub Mar 2014

The Use Of 3d Printing To Enable High Altitude Balloon Missions, Jeremy Straub

Jeremy Straub

The 3D printing technology allows the low-cost creation of structures based on user-defined configuration parameters. Unlike other plastic-forming technologies, there is no tooling cost related to the creation of a mold. Because of this, highly-customized structures can be created with a minimum production quantity of one, allowing adaptation to individual mission needs (for a single-HAB mission) or the change of the structure across a multi-unit run (e.g., to test various configurations or as part of a study requiring multiple payloads with different configurations).

This paper considers the mission possibilities enabled by the use of 3D printing for HAB structures. These …


An Engineering Trade Space Analysis For A Space-Based Hyperspectral Chromotomographic Scanner, Phillip Sheirich Mar 2009

An Engineering Trade Space Analysis For A Space-Based Hyperspectral Chromotomographic Scanner, Phillip Sheirich

Theses and Dissertations

Hyperspectroscopy for fast transient events such as battlefield explosions is an undeveloped area of spectral imaging. This thesis is a discussion of issues involved with taking a laboratory design for a rotating prism hyperspectral chromotomographic (CT) instrument and producing a first approximation satellite payload design, operating scheme and trade space analysis to support demonstration of this technology in low-earth orbit. This instrument promises the capability of adding a time dimension to the normal spatial and spectral data produced by most hyperspectral imagers. The ultimate goal is to conduct experiments demonstrating the ultimate viability of spectral definition of transient combustion events …


Applying Flywheel Energy Storage To Solar Electric Orbital Transfers, Mark W. Marasch Dec 1997

Applying Flywheel Energy Storage To Solar Electric Orbital Transfers, Mark W. Marasch

Theses and Dissertations

This study investigated the application of flywheel energy storage to minimum time, constant thrust orbital maneuvers using electric propulsion. The advantages of using stored energy to continue electric thruster operations while in eclipse were explored. The boundary value problems for several schemes of energy use were examined, and numerical solutions were found. Results of simulations utilizing energy storage were compared to results without energy storage. Schemes incorporating energy storage were found to have advantages in terms of propellant mass used, time spent in transit, and deliverable payload.


Optimal Non-Coplanar Launch To Quick Rendezvous, Gregory B. Sears Dec 1997

Optimal Non-Coplanar Launch To Quick Rendezvous, Gregory B. Sears

Theses and Dissertations

The purpose of this study was to determine the feasibility of launching a Delta Clipper-like vehicle on an optimal, non-coplanar trajectory to rendezvous with an earth orbiting object in one orbit or less. The focus of the research was to determine what such a trajectory would look like, and to determine the cost, in payload mass, of flying such a trajectory. A model for the ascent trajectory was developed using the dynamics equations of motion, an atmosphere model, and an aerodynamic model for the DC-Y concept vehicle. A boundary value problem was posed and solved for a coplanar rendezvous. The …


Advanced Rover Chassis, Eric Alan Poulson, Collin Lewis, Todd Graves May 1995

Advanced Rover Chassis, Eric Alan Poulson, Collin Lewis, Todd Graves

Undergraduate Honors Capstone Projects

Background:

The six wheeled rover vehicle detailed in this design is intended as an upgrade test bed for the sensor array and autonomous navigation algorithms in use by Utah State University's Center for Self-Organizing and Intelligent Systems (CSOIS). The CSOIS's sensor suite can successfully detect and avoid unnavigable obstacles up to five vehicle lengths in front of the vehicle. The center presently uses a modified RC type chassis and only supports two wheel drive. This chassis was adequate to bring the CSOIS's algorithms to a proof-of-principles state, but in order to place the system in any practical application, a full …