Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Time Domain Boundary Element Method Prediction Of Noise Shielding By A Naca 0012 Airfoil, Douglas M. Nark, Fang Q. Hu Jan 2021

Time Domain Boundary Element Method Prediction Of Noise Shielding By A Naca 0012 Airfoil, Douglas M. Nark, Fang Q. Hu

Mathematics & Statistics Faculty Publications

As aircraft noise constraints become more stringent and the number/mixture of aircraft configurations grows, it becomes more important to understand the interaction of individual aircraft noise sources with nearby aircraft structures. Understanding these interactions and exploring possible approaches to mitigate or exploit their acoustic impact is essential for overcoming key noise barriers. This paper describes the further validation of a time domain boundary element approach for the prediction of the interactions between incident noise sources and nearby aircraft structures. Predictions were completed for multiple source locations and comparisons of these results with measured data are presented. Overall, very good agreement …


Experimental Study On Influence Of Pitch Motion On The Wake Of A Floating Wind Turbine Model, Stanislav Rockel, Elizabeth Camp, Jonas Schmidt, Joachim Peinke, Raúl Bayoán Cal, Michael Höllimg Mar 2014

Experimental Study On Influence Of Pitch Motion On The Wake Of A Floating Wind Turbine Model, Stanislav Rockel, Elizabeth Camp, Jonas Schmidt, Joachim Peinke, Raúl Bayoán Cal, Michael Höllimg

Mechanical and Materials Engineering Faculty Publications and Presentations

Wind tunnel experiments were performed, where the development of the wake of a model wind turbine was measured using stereo Particle Image Velocimetry to observe the influence of platform pitch motion. The wakes of a classical bottom fixed turbine and a streamwise oscillating turbine are compared. Results indicate that platform pitch creates an upward shift in all components of the flow and their fluctuations. The vertical flow created by the pitch motion as well as the reduced entrainment of kinetic energy from undisturbed flows above the turbine result in potentially higher loads and less available kinetic energy for a downwind …