Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 42 of 42

Full-Text Articles in Engineering

Investigation Of Bio-Inspired Pin Geometries For Heat Transfer Applications, Anish Prasad May 2021

Investigation Of Bio-Inspired Pin Geometries For Heat Transfer Applications, Anish Prasad

Doctoral Dissertations and Master's Theses

Array of circular cylindrical pins or tubes are one of the most widely used type of convection cooling systems, profoundly used in the internal cooling of gas turbine blades. They promote heat transfer due to flow acceleration, secondary flows and wake shedding, at the expense of large pressure loss and unsteadiness in the flow. The need to reduce pressure loss and maintain the heat transfer rates are a much needed requirement for a variety of industries to improve the cooling efficiency. One such prominent line of research is conducted on optimizing the design of the circular cylindrical pins to increase …


Data-Driven Architecture To Increase Resilience In Multi-Agent Coordinated Missions, D. F. May 2021

Data-Driven Architecture To Increase Resilience In Multi-Agent Coordinated Missions, D. F.

Doctoral Dissertations and Master's Theses

The rise in the use of Multi-Agent Systems (MASs) in unpredictable and changing environments has created the need for intelligent algorithms to increase their autonomy, safety and performance in the event of disturbances and threats. MASs are attractive for their flexibility, which also makes them prone to threats that may result from hardware failures (actuators, sensors, onboard computer, power source) and operational abnormal conditions (weather, GPS denied location, cyber-attacks). This dissertation presents research on a bio-inspired approach for resilience augmentation in MASs in the presence of disturbances and threats such as communication link and stealthy zero-dynamics attacks. An adaptive bio-inspired …


Air Traffic Controllers’ Occupational Stress And Performance In The Future Air Traffic Management, Hui Wang May 2021

Air Traffic Controllers’ Occupational Stress And Performance In The Future Air Traffic Management, Hui Wang

Doctoral Dissertations and Master's Theses

As demand for unmanned aerial vehicle (UAV) operations increases, it is vital to understand its effects on air traffic controllers and the safety of the national airspace system. This study’s primary purpose is to determine how UAVs that operate in controlled airspace would influence air traffic controllers’ occupational stress and performance. In a within-subject experimental research design, 24 participants sampled from a university’s undergraduate Air Traffic Management (ATM) program completed three different air traffic control (ATC) scenarios on an en route ATC simulation system. The degree of UAV automation and control were varied in each scenario. The participants’ stress levels, …


Adaptive Control For Nonlinear, Time Varying Systems, John Zelina May 2021

Adaptive Control For Nonlinear, Time Varying Systems, John Zelina

Doctoral Dissertations and Master's Theses

It is common for aerospace systems to exhibit nonlinear, time varying dynamics. This thesis investigates the development of adaptive control laws to stabilize and control a class of nonlinear, time varying systems. Direct adaptive control architectures are implemented in order to compensate for time varying dynamics that could, for example, be caused by varying inertia resulting from fuel slosh or settling in a tank. The direct adaptive controller can also respond to external disturbances and unmodeled or nonlinear dynamics. Simulation results are presented for a prototype system that consists of two rotating tanks with time varying inertia due to the …


Analysis Of Ship Airwakes Using Modal Decomposition, Nicholas Zhu May 2021

Analysis Of Ship Airwakes Using Modal Decomposition, Nicholas Zhu

Doctoral Dissertations and Master's Theses

The three-dimensional, unsteady, and turbulent airwake produced by a scaled model of a generic Navy ship (Simple Frigate Shape No. 2) was investigated in a low-speed wind tunnel. Stereoscopic, time-resolved particle image velocimetry (TR-PIV) measurements were made at six different crosswise planes over the flight deck region of the ship model, with and without the effect of a simulated atmospheric boundary layer (ABL).

Spatiotemporal analyses of the TR-PIV measurements were performed using modal decomposition, and the modes were decomposed further based on the frequency contents of their time dynamics. This approach allowed an inspection of the individual scales of the …


Adaptive And Neural Network-Based Aircraft Tracking Control With Synthetic Jet Actuators, Joshua Teramae Apr 2021

Adaptive And Neural Network-Based Aircraft Tracking Control With Synthetic Jet Actuators, Joshua Teramae

Doctoral Dissertations and Master's Theses

Wing-embedded synthetic jet actuators (SJA) can be used to achieve maneuvering control in aircraft by delivering controllable airflow perturbations near the wing surface. Trajectory tracking control design for aircraft equipped with SJA is particularly challenging, since the controlling actuator itself has an uncertain dynamic model. These challenges necessitate advanced nonlinear control design methods to achieve desirable performance for SJA-based aircraft (e.g., micro air vehicles (MAVs)). In this research, adaptive and neural-network based control methods are investigated, which are specifically designed to compensate for the SJA dynamic model uncertainty and unpredictable operating conditions characters tic of real-world MAV applications. The control …


Indirect Model Reference Adaptive Control With Online Parameter Estimation, Jovan Bruce Apr 2021

Indirect Model Reference Adaptive Control With Online Parameter Estimation, Jovan Bruce

Doctoral Dissertations and Master's Theses

Over the years, parameter estimation has focused on approaches in both the time and frequency domains. The parameter estimation process is particularly important for aerospace vehicles that have considerable uncertainty in the model parameters, as might be the case with unmanned aerial vehicles (UAVs). This thesis investigates the use of an Indirect Model Reference Adaptive Controller (MRAC) to provide online, adaptive estimates of uncertain aerodynamic coefficients, which are in turn used in the MRAC to enable an aircraft to track reference trajectories. The performance of the adaptive parameter estimator is compared to that of the Extended Kalman Filter (EKF), a …


A Comparative Study Between 6 Degree-Of-Freedom Trajectory Model And Modified Point Mass Trajectory Model Of Spinning Projectiles, Ange Du Apr 2021

A Comparative Study Between 6 Degree-Of-Freedom Trajectory Model And Modified Point Mass Trajectory Model Of Spinning Projectiles, Ange Du

Doctoral Dissertations and Master's Theses

For spinning projectiles, the 6 Degree-of-Freedom model can closely capture their trajectories with high accuracy and details. However, it comes with the drawbacks of long computation time and needing many aerodynamic coefficients which can be hard to obtain. The Modified Point Mass Trajectory Model was introduced as a simplified solution. This work compares them with each other, and with some more conventional methods. A program is developed to simulate and visualize trajectories. With some augmentations, the Modified Point Mass model is able to generate comparable results in most cases, but not including special cases such as when the projectile is …


Investigation Of Trajectory And Control Designs For A Solar Sail To The Moon, Michelle Nadeau Apr 2021

Investigation Of Trajectory And Control Designs For A Solar Sail To The Moon, Michelle Nadeau

Doctoral Dissertations and Master's Theses

NASA’s Artemis program and other government and commercial projects are working toward establishing a sustainable human presence on the moon. This thesis investigates the technical feasibility of a solar sail-based spacecraft (sailcraft) as a low-cost method of delivering cargo or science instruments to the moon and demonstrates how this sailcraft could be controlled to change its orbit. The concept is a low-cost, commercial launch vehicle-deployable, CubeSat-based sailcraft with a square sail, assumed attitude control, and a small payload traversing from low-Earth orbit toward the moon with zero propellant use. In this thesis, methods for sailcraft to increase altitude, the trajectory …


The Effects Of Remotely Piloted Aircraft Command And Control Latency During Within-Visual-Range Air-To-Air Combat, David Thirtyacre Mar 2021

The Effects Of Remotely Piloted Aircraft Command And Control Latency During Within-Visual-Range Air-To-Air Combat, David Thirtyacre

Doctoral Dissertations and Master's Theses

The type of military missions conducted by remotely piloted aircraft continues to expand into all facets of operations including air-to-air combat. While future within-visual-range air-to-air combat will be piloted by artificial intelligence, remotely piloted aircraft will likely first see combat. The purpose of this study was to quantify the effect of latency on one-versus-one, within-visual-range air-to-air combat success during both high-speed and low-speed engagements. The research employed a repeated-measures experimental design to test the various hypothesis associated with command and control latency. Participants experienced in air-to-air combat were subjected to various latency inputs during one-versus-one simulated combat using a virtual-reality …


Adaptive Augmentation Of Non-Minimum Phase Flexible Aerospace Systems, Michael A. Dupuis Mar 2021

Adaptive Augmentation Of Non-Minimum Phase Flexible Aerospace Systems, Michael A. Dupuis

Doctoral Dissertations and Master's Theses

This work demonstrates the efficacy of direct adaptive augmentation on a robotic flexible system as an analogue of a large flexible aerospace structure such as a launch vehicle or aircraft. To that end, a robot was constructed as a control system testbed. This robot, named “Penny,” contains the command and data acquisition capabilities necessary to influence and record system state data, including the flex states of its flexible structures. This robot was tested in two configurations, one with a vertically cantilevered flexible beam, and one with a flexible inverted pendulum (a flexible cart-pole system). The physical system was then characterized …


Estimation Of Spacecraft Attitude Motion And Vibrational Modes Using Simultaneous Dual-Latitude Ground-Based Data, Zachary William Henry Jan 2021

Estimation Of Spacecraft Attitude Motion And Vibrational Modes Using Simultaneous Dual-Latitude Ground-Based Data, Zachary William Henry

Doctoral Dissertations and Master's Theses

Cutting-edge Space Situational Awareness (SSA) research calls for improved methods for rapidly characterizing resident space objects. In this thesis, this will take the form of speeding up convergence of spacecraft attitude estimates, and of a non-model-based approach to the detection of vibrational modes. Because attitude observability from photometric data is angle-based, dual-site simultaneous photometric observations of a resident space object are predicted to improve the convergence speed and steady-state error of spacecraft attitude state estimation from ground-based sensor data. Additionally, it is predicted that by adding polarimetric data to the measurements, the speed of convergence and steady-state error will be …