Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Entire DC Network

Surface-Functionalized Chemiresistive Films That Exploit H-Bonding, Cation-Pi, And Metal-Halide Interactions., Prasadanie Karunarathna Adhihetty May 2022

Surface-Functionalized Chemiresistive Films That Exploit H-Bonding, Cation-Pi, And Metal-Halide Interactions., Prasadanie Karunarathna Adhihetty

Electronic Theses and Dissertations

The development of gas sensors for detection of volatile organic compounds (VOCs) has been of interest in the sensing field for decades. To date, the use of metal nanoparticle-based chemiresistors for trace VOC detection, particularly gold nanoparticle-based sensors, is of great interest due to their high chemical stability, ease of synthesis, unique optical properties, large surface to volume ratio, and high level of conductivity. Much effort has been devoted towards gold monolayer protected clusters (Au MPCs) as chemiresistors to detect harmful VOCs. The present thesis documents the results of our efforts to exploit the advantages of functionalized Au MPCs chemiresistors …


Copper Electrodeposition In Full Wafer Thickness Through-Silicon Vias, Rebecca P. Schmitt Dec 2020

Copper Electrodeposition In Full Wafer Thickness Through-Silicon Vias, Rebecca P. Schmitt

Chemical and Biological Engineering ETDs

Through-silicon vias (TSVs) are a key interconnect technology for advanced packaging of microelectronic devices, and full wafer thickness TSVs are required for certain microelectromechanical systems (MEMS) applications. In this work, electrolytes containing copper sulfate, an acid, chloride, and Tetronic 701 suppressor were implemented for Cu filling of high aspect ratio (10:1), full wafer thickness TSVs. For each electrolyte system, rotating disk electrode voltammetry was used to identify a voltage range for bottom-up Cu filling in the TSVs. Die level feature filling was performed using voltage ramping, which moved active deposition through the vias to yield void-free Cu features. During voltage-controlled …


Fabrication Of Silicon Microneedles For Dermal Interstitial Fluid Extraction In Human Subjects, Caleb A. Berry Aug 2020

Fabrication Of Silicon Microneedles For Dermal Interstitial Fluid Extraction In Human Subjects, Caleb A. Berry

Electronic Theses and Dissertations

The goal of this project is to design and develop a fabrication process for silicon microneedle arrays to extract dermal interstitial fluid (ISF) from human skin. ISF is a cell- free, living tissue medium that is known to contain many of the same, clinical biomarkers of general health, stress response and immune status as in blood. However, a significant barrier to adoption of ISF as a diagnostic matrix is the lack of a rapid, minimally invasive method of access and collection for analysis. Microfabricated chips containing arrays of microneedles that can rapidly and painlessly access and collect dermal ISF for …


Development Of Microdialysis Probes In Series Approach Toward Eliminating Microdialysis Sampling Calibration: Miniaturization Into A Pdms Microfluidic Device, Randy Espinal Cabrera May 2018

Development Of Microdialysis Probes In Series Approach Toward Eliminating Microdialysis Sampling Calibration: Miniaturization Into A Pdms Microfluidic Device, Randy Espinal Cabrera

Graduate Theses and Dissertations

A new microdialysis sampling method and microfluidic device were developed in vitro. The method consisted of using up to four microdialysis sampling probes connected in series to evaluate the relative recovery (RR) of different model solutes methyl orange, fluorescein isothiocyanate (FITC)-dextran average mol. wt. 4,000 (FITC-4), FITC-10, FITC-20, and FITC-40. Different flow rates (0.8, 1.0, and 1.5 µL/min) were used to compare experimentally observed relative recoveries with theoretical estimations. With increasing the number of probes in series, the relative recovery increases and ~100% (99.7% ± 0.9%) relative recovery for methyl orange was obtained. For larger molecules such as fluorescein isothiocyanate …


Thermal Microfluidic Devices; Design, Fabrication And Applications, Benyamin Davaji Apr 2016

Thermal Microfluidic Devices; Design, Fabrication And Applications, Benyamin Davaji

Dissertations (1934 -)

This thesis investigates the thermal actuation and temperature measurement methods in microfluidic devices. We designed and fabricated microfluidic devices with various functionalities such as: bio sensing, particle counting, microscale calorimetry, and cellular temperature measurement. All of these functionalities use thermal measurement methods. When quantitative measurements are required, the label-free nature of thermal measurement methods, along with its simple readout, make it a powerful candidate for lab on a chip and bio sensing/detection applications. In this work, thermal measurement methods are used to characterize bio-samples, measure concentrations, study thermal responses, and even perform particle cytometry. However, thermal measurement methods are known …


Photonic Crystal-Based Flow Cytometry, Justin William Stewart Oct 2014

Photonic Crystal-Based Flow Cytometry, Justin William Stewart

USF Tampa Graduate Theses and Dissertations

Photonic crystals serve as powerful building blocks for the development of lab-on-chip devices. Currently they are used for a wide range of miniaturized optical components such as extremely compact waveguides to refractive-index based optical sensors. Here we propose a new technique for analyzing and characterizing cells through the design of a micro-flow cytometer using photonic crystals. While lab scale flow cytometers have been critical to many developments in cellular biology they are not portable, difficult to use and relatively expensive. By making a miniature sensor capable of replicating the same functionality as the large scale units with photonic crystals, we …


Electrodeposited Metal Matrix Nanocomposites As Thin Films And High Aspect Ratio Microstructures For Mems, Alonso Lozano Morales Jan 2006

Electrodeposited Metal Matrix Nanocomposites As Thin Films And High Aspect Ratio Microstructures For Mems, Alonso Lozano Morales

LSU Doctoral Dissertations

The electrodeposition of metal-matrix nanocomposites as thin film and high aspect ratio microstructures (HARM’s) for MicroElectroMechanical Systems (MEMS) components is examined. The effect of -Al2O3 nanopowder on copper reduction from acidic and basic electrolytes is examined with rotating disk electrodes (RDE’s). At pH 0.2, regions of copper inhibition and enhancement are identified in the kinetic regime. Low particle loading (12.5 g/L) results in an inhibited copper rate, while, high particle concentration (60 g/L) does both, inhibits the rate at low overpotentials and accelerates it at higher overpotentials, depending on the electrode rotation rate. At pH 8 the presence of particles …


Layer-By-Layer Nanoassembly Combined With Microfabrication Techniques For Microelectronics And Microelectromechanical Systems, Jingshi Shi Oct 2004

Layer-By-Layer Nanoassembly Combined With Microfabrication Techniques For Microelectronics And Microelectromechanical Systems, Jingshi Shi

Doctoral Dissertations

The objective of this work is to investigate the combination of layer-by-layer self-assembly with microfabrication technology and its applications in microelectronics and MEMS.

One can assemble, on a standard silicon wafer, needed multilayers containing different nanoparticles and polymers and then apply various micromanufacturing techniques to form microdevices with nanostructured elements.

Alternate layer-by-layer self-assembly of linear polyions and colloidal silica at elevated temperatures have been firstly studied by QCM and SEM. LbL self-assembly and photolithography were combined to fabricate an indium resistor. The RTA method was employed in the fabrication. Hot-embossing technique as a reasonably fast and moderately expensive technique was …


Electrodeposition Of Nickel-Copper Alloys And Nickel-Copper-Alumina Nanocomposites Into Deep Recesses For Mems, Amrit Panda Jan 2003

Electrodeposition Of Nickel-Copper Alloys And Nickel-Copper-Alumina Nanocomposites Into Deep Recesses For Mems, Amrit Panda

LSU Doctoral Dissertations

Electrodeposition is an important component in the fabrication of micro electro mechanical systems (MEMS). Nickel is the most commonly used material to produce three dimensional microstructures and few material alternatives have been demonstrated. In this dissertation, electrodeposited Ni-Cu alloys and nanocomposites are investigated as possible replacements for nickel in microsystems. Ni-Cu alloys are attractive for their corrosion resistance, magnetic and thermophysical properties. Alumina nanoparticulates included into metal matrices improve hardness and tribology of deposits. The Ni-Cu alloys and Ni-Cu-g-Al2O3 nanocomposites were electrodeposited from a citrate electrolyte, both at low and high pH. Electrodeposition experiments were performed in recessed microelectrodes 500 …