Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Mechanical Engineering

Turbulence

LSU Master's Theses

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Design, Fabrication And Characterization Of A New Wind Tunnel Facility – Linear Cascade With A Wake Simulator, Jean-Philippe Junca-Laplace Jan 2011

Design, Fabrication And Characterization Of A New Wind Tunnel Facility – Linear Cascade With A Wake Simulator, Jean-Philippe Junca-Laplace

LSU Master's Theses

A new wind tunnel has been designed and constructed at the LSU Mechanical Engineering Laboratories. The objective was to design a versatile test facility, suitable for a wide range of experimental measurements on turbine blades. The future study will investigate the impact of unsteady inflow conditions on film cooling performance. More specifically, it will study how the unsteady flow due to the upstream passing wakes coming from the front row vane affects the film cooling performances on the turbine blades. The test section consists of a four passage linear cascade composed of three full blades and two shaped wall blades. …


Effect Of Unsteady Wake, Free Stream Turbulence, Tip Geometry On Blade Tip Flow And Heat Transfer, Vikrant Saxena Jan 2003

Effect Of Unsteady Wake, Free Stream Turbulence, Tip Geometry On Blade Tip Flow And Heat Transfer, Vikrant Saxena

LSU Master's Theses

A comprehensive investigation of the effect of various tip sealing geometries is presented on the blade tip leakage flow and associated heat transfer. The linear cascade is made of four blades scaled up HPT turbine in a low speed wind tunnel facility with the two corner blades acting as guides. The tip section of a HPT first stage rotor blade is used to fabricate the 2-D blade. The wind tunnel accommodates an 116 degree turn in the flow through the blade cascade. The mainstream Reynolds number based on the axial chord length at cascade exit is 4.83e5. The center blade …