Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Mechanical Engineering

Turbulence

Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 89

Full-Text Articles in Entire DC Network

Influence Of Swirl And Turbulence In The Particle Removal Using Fog In A Pipe Flow, Nisarg T. Patel Aug 2023

Influence Of Swirl And Turbulence In The Particle Removal Using Fog In A Pipe Flow, Nisarg T. Patel

All Theses

Fog-and-tube scrubbers are employed to remove harmful ultrafine aerosols, such as Diesel particulate matter (DPM), from an airflow. The underlying principle of this removal process involves enlarging the aerosol particles by coagulating them with fog drops, which are subsequently eliminated through inertial impaction onto the tube wall. Previous research conducted by Tabor et al. (2021) demonstrated an increase in scavenging of ultrafine DPM particles, ranging from 11.5 nm to 154 nm, by as large as 45% over the no fog case. This finding is crucial in addressing the challenges associated with conventional filtration methods for capturing ultrafine particles.

The present …


Heat Transfer Characteristics Of Latent Heat Thermal Energy Storage, Kedar Prashant Shete Apr 2023

Heat Transfer Characteristics Of Latent Heat Thermal Energy Storage, Kedar Prashant Shete

Doctoral Dissertations

Latent heat thermal energy storage (LHTES) systems can be used to reduce electric demand when used in conjunction with Combined Heat and Power Plants or HVAC(Heating, Ventilation, Refrigeration and Air-Conditioning), as they can regulate the demand and supply of thermal energy. They can also be used to integrate renewable energy sources with the grid. A design procedure and performance modeling is required for designing and using thermal energy storage systems effectively. We propose hypotheses about the performance of an LHTES device with different operating conditions and material properties, for devices that are governed by different modes of heat transfer. We …


Utilization Of Uncrewed Aircraft Systems Towards Investigating The Structure Of The Atmospheric Surface Layer, Loiy Al-Ghussain Jan 2023

Utilization Of Uncrewed Aircraft Systems Towards Investigating The Structure Of The Atmospheric Surface Layer, Loiy Al-Ghussain

Theses and Dissertations--Mechanical Engineering

This study presents two approaches to investigate the surface-layer structure during the morning transition using uncrewed aircraft systems. The first approach employs three uncrewed aircraft systems- each equipped with a single multi-hole probe- simultaneously measuring horizontal transects were partnered with a fourth measuring vertical profiles during two consecutive mornings as part of the 2017 Collaboration Leading Operational Unmanned Aerial System Development for Meteorology and Atmospheric Physics (CLOUDMAP) measurement campaign near Stillwater, Oklahoma, U.S.A. Data were analyzed to extract time-dependent single-point statistics of kinematic and thermodynamic variables from the uncrewed aircraft systems. In addition, an approach is presented by which multi-point …


Piv Measurements Of Open-Channel Turbulent Flow Under Unconstrained Conditions, James K. Arthur Jan 2023

Piv Measurements Of Open-Channel Turbulent Flow Under Unconstrained Conditions, James K. Arthur

Faculty Journal Articles

Many open-channel turbulent flow studies have been focused on highly constrained conditions. Thus, it is rather conventional to note such flows as being fully developed, fully turbulent, and unaffected by sidewalls and free surface disturbances. However, many real-life flow phenomena in natural water bodies and artificially installed drain channels are not as ideal. This work is aimed at studying some of these unconstrained conditions. This is achieved by using particle image velocimetry measurements of a developing turbulent open-channel flow over a smooth wall. The tested flow effects are low values of the Reynolds number based on the momentum thickness Re …


Jet Noise Reduction: A Fresh Start, Christopher K. Tam, Fang Q. Hu Jan 2023

Jet Noise Reduction: A Fresh Start, Christopher K. Tam, Fang Q. Hu

Mathematics & Statistics Faculty Publications

Attempts to reduce jet noise began some 70 years ago. In the literature, there have been many publications written on this topic. By now, it is common knowledge that jet noise consists of a number of components. They possess different spectral and radiation characteristics and are generated by different mechanisms. It appears then that one may aim at the suppression of the noise of a single component instead of trying to reduce jet noise overall. The objective of the present project is to reduce large turbulence structures noise. It is the most dominant noise component radiating in the downstream direction. …


Upscaling And Development Of Linear Array Focused Laser Differential Interferometry For Simultaneous 1d Velocimetry And Spectral Profiling In High-Speed Flows, Kirk Davenport Aug 2022

Upscaling And Development Of Linear Array Focused Laser Differential Interferometry For Simultaneous 1d Velocimetry And Spectral Profiling In High-Speed Flows, Kirk Davenport

Masters Theses

In this research a new configuration of linear array-focused laser differential interferometry (LA-FLDI) is described. This measurement expands on previous implementations of LA-FLDI through the use of an additional Wollaston prism. This additional prism expands the typical single LA-FLDI column into two columns of FLDI point pairs. The additional column of probed locations allows for increased spatial sampling of frequency spectra as well as the addition of simultaneous wall normal velocimetry measurements. The new configuration is used to measure the velocity profile and frequency content across a Mach 2 turbulent boundary layer at six wall normal locations simultaneously. Features of …


Fiesta And Shock-Driven Flows, Brian E. Romero Jul 2022

Fiesta And Shock-Driven Flows, Brian E. Romero

Mechanical Engineering ETDs

In this study, the interaction of a shock with various gas and particle interfaces is analyzed through simulations using a new, GPU capable, multi-species flow solver, FIESTA (Fast, Interface Evolution, Shocks, and Transport in the Atmosphere), de- veloped for this research. The cases studied include the interaction between a shock and i) a two-dimensional (2D), circular cloud of a dense gas; ii) a 2D curtain of a dense gas; iii) a three-dimensional (3D) cylinder of a dense gas, and iv) a 3D curtain of solid particles.

In simulations of a 2D gas curtain and a 3D gas column, the curtain …


Quantifying The Dynamics Of An Idealized Oil-Plume In Stratified Environment Using Direct Numerical Simulations, Jasmin Ahmed May 2022

Quantifying The Dynamics Of An Idealized Oil-Plume In Stratified Environment Using Direct Numerical Simulations, Jasmin Ahmed

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Deep-water oil spills such as the incident in the northern Gulf of Mexico 2010, produce turbulent oil plumes. Multiphase turbulent plumes under stratification are simulated to understand the dynamics of oil plume in oceanic environment. The evolution of the plume is strongly affected by the level of turbulent mixing during the rise of oil through the stratified water. The relative velocity due to the difference in density between oil and water causes slip of oil in water. The plume has been modeled as a two fluid mixture-model, which allows the use of one continuity and momentum equation for the oil-water …


Quantification Of Reynolds Shear Stress Wave-Phase Dependence In Fixed-Bottom Offshore Wind Turbine Via Quadrant Analysis, Cerrina Mouchref, Bianca Viggiano, RaúL BayoáN Cal, Ondrej FerčÁK Mar 2022

Quantification Of Reynolds Shear Stress Wave-Phase Dependence In Fixed-Bottom Offshore Wind Turbine Via Quadrant Analysis, Cerrina Mouchref, Bianca Viggiano, RaúL BayoáN Cal, Ondrej FerčÁK

University Honors Theses

As the need for a reliable renewable energy supply is increasing, many have looked to offshore wind because they hold more potential for power production than onshore wind. Interests in expanding offshore wind energy has brought along many challenges when it comes to understanding the complex dynamics experienced offshore, including the relationship between the wind-turbine generated wakes and ocean waves. This experimental study characterizes the relationship between Reynolds shear stress and the phase of surface waves above the air-sea interface in the wind-turbine wake region. The experimental setup combines a wave tank, wind tunnel, and a fixed-bottom wind turbine. Particle …


Mean Pressure Gradient Effects On Flame-Flow Dynamics In A Cavity Combustor, David M. Smerina Jan 2022

Mean Pressure Gradient Effects On Flame-Flow Dynamics In A Cavity Combustor, David M. Smerina

Honors Undergraduate Theses

Pressure gradient confinement effects are experimentally investigated within a cavity combustor to analyze the flame interactions of premixed, cavity stabilized, flames in a high-speed combustor. Pressure gradient confinement effects are generated in a dual mode ramjet-scramjet (DMSR) by varying the wall geometry to form converging, diverging, and nominal configurations. The velocity field and flame position are captured temporally using simultaneous high-speed particle image velocimetry (PIV) and CH chemiluminescence. The evolution of the flow field and flame structure are analyzed, and the high temporal resolution of these measurements allows for the characterization of turbulence-flame interactions. Consideration of the combustion mode and …


Fixed Bottom Wind Turbine Wave-Wake Interaction, Ondrej Fercak Jul 2021

Fixed Bottom Wind Turbine Wave-Wake Interaction, Ondrej Fercak

Dissertations and Theses

The interest and benefits of offshore wind energy has also brought along legitimate design challenges for engineers. Most notably, the complex interaction between wind and turbine is further complicated by the addition of dynamic ocean waves. This dynamic coupling between wind, wave, and turbine is not fully understood. Even small improvements in wind turbine performance are welcome, so characterizing a fundamental dynamic in offshore energy is necessary to optimize design. Experimentation and simulation have been used to characterize inflow and turbine wakes and separately, wind-wave interactions. But only simulations have just begun to look at the wind, wave, and turbine …


On The Improvements Of Boundary-Layer Representation For High Resolution Weather Forecasting In Costal-Urban Environments, David Melecio-Vazquez Jan 2021

On The Improvements Of Boundary-Layer Representation For High Resolution Weather Forecasting In Costal-Urban Environments, David Melecio-Vazquez

Dissertations and Theses

As large urban centers around the world become more densely populated, the global conversion from natural to man-made land surfaces will only increase. These land-use changes affect the urban surface energy budget which in turn changes the structure of the planetary boundary layer (PBL) above. With current high-performance computing systems, meteorological and built environment information can be better utilized to quantify the anthropogenic effects of these modifications. Although these systems have improved forecasting near-surface weather conditions, a comprehensive approach to represent urban impacts on the PBL is still limited. Improved PBL representation can lead to better weather and climate forecasts, …


A Numerical And Experimental Study Of Lid Driven Square Cavity Flow For Laminar And Turbulent Cases, Abdullah Bin Naeem Dec 2020

A Numerical And Experimental Study Of Lid Driven Square Cavity Flow For Laminar And Turbulent Cases, Abdullah Bin Naeem

University of New Orleans Theses and Dissertations

Experimental and numerical studies are performed on steady and unsteady lid-driven cavity flow for laminar flow regime. In the experiments, a PIV and an LDA were employed to measure the global and local velocities, respectively inside a cavity of AR 1.0. The velocity vector plots and streamline plots which represent unsteady circulation patterns are obtained using the PIV. The steady local velocities measured with LDA are then used to calibrate the PIV measurements. The numerical study is performed using a commercial CFD solver. For turbulent flow simulation RANS equations with K-Epsilon closure model were used. From the PIV calibration study, …


Experimental Investigation Of Flow And Thermal Behavior In Channels With Pcm-Filled Thermal Energy Storage Columns For Potential Application In Photobioreactors, Kira Toxopeus Jul 2020

Experimental Investigation Of Flow And Thermal Behavior In Channels With Pcm-Filled Thermal Energy Storage Columns For Potential Application In Photobioreactors, Kira Toxopeus

Electronic Thesis and Dissertation Repository

Microalgae has been identified as a potential source for the production of biofuels and other bio-products. The growth of microalgae is sensitive to the temperature variations inside the photobioreactor. The present research investigated an innovative approach to thermally regulate photobioreactors by introducing passive thermal energy storage using phase change material (PCM). The research was specifically focused on a novel design to integrate thermal storage in the reactor channel in the form of offset columns containing PCM. Two column shapes were considered: circular and square. The first part of the study was focused on characterizing the influence of offset column shapes …


Turbulence Investigations In The Core-Flow Of An Internal Combustion Engine, James R. Macdonald Jun 2020

Turbulence Investigations In The Core-Flow Of An Internal Combustion Engine, James R. Macdonald

Dissertations

Turbulence significantly impacts the operation of energy conversion devices. In internal combustion (IC) engines, mixing, heat transfer, and combustion are all strongly dependent on the turbulence inside the cylinder. Consequently, knowledge of the state of turbulence is critical for improving our understanding and modeling of engine processes.

Turbulence states may be determined through analysis of the Reynolds stress tensor, which can in turn be experimentally quantified using velocity data. In this research, stereoscopic particle image velocimetry (stereo-PIV) experiments were conducted in a single-cylinder, motored engine with optical access to measure the two-dimensional, three-component (2D-3C) velocity fields throughout the compression stroke. …


Effects Of High Freestream Turbulence And Conduction On Film Cooling Effectiveness Of Shaped Holes, Richard A. Macias Jr. Mar 2020

Effects Of High Freestream Turbulence And Conduction On Film Cooling Effectiveness Of Shaped Holes, Richard A. Macias Jr.

Theses and Dissertations

With technological advancements allowing higher turbine temperatures, film cooling continues to be an important research area. The Film Cooling Rig (FCR) was fitted with a turbulence generator to vary freestream turbulence intensity and length scale, enabling the effects of high freestream turbulence on overall effectiveness to be studied. A cylindrical hole and laidback fan-shaped hole were investigated over a range of Advective Capacity Ratio (ACR) for freestream turbulence intensities of 2%, 10%, and 15%. For a given ACR, increasing the turbulence intensity resulted in lower overall effectiveness values due to the larger heat transfer coefficient that comes from turbulent ow. …


Characterization Of Inertial Particles In The Turbulent Wake Of A Porous Disk, Kristin Nichole Travis Jan 2020

Characterization Of Inertial Particles In The Turbulent Wake Of A Porous Disk, Kristin Nichole Travis

Dissertations and Theses

This study presents the findings of a wind tunnel experiment investigating the behaviour of micrometric inertial particles in the turbulent wake of a stationary porous disk. Various concentrations [Φv ∈ (2.95 x 10-6 - 1.22 x 10-5)] of polydisperse water droplets (diameter 13-41 µm) are compared to sub-inertial tracer particles. Hot-wire anemometry, phase Doppler interferometry and particle image velocimetry were implemented in the near and far wake regions to study the complex dynamics of the particles. Turbulence statistics and particle size distributions are presented and used to explore the particle wake interaction.


Assessment And Improvement Of Computational Fluid Dynamics Methods For Separated Turbulent Flows At Low Reynolds Numbers, Tom Mancuso Jan 2020

Assessment And Improvement Of Computational Fluid Dynamics Methods For Separated Turbulent Flows At Low Reynolds Numbers, Tom Mancuso

Dissertations, Master's Theses and Master's Reports

This study investigates the accuracy of Computational Fluid Dynamics (CFD) models to predict heat transfer in turbulent separated flows at low Reynolds numbers. A novel improvement of a Scale Adaptive technique is also presented. A spectrum of turbulence models is used to simulate flow and heat transfer of two geometries; fully developed flow through a staggered tube bank and a square prism in cross flow. Experimental data for both local heat transfer and velocity data are available in the literature for these cases and have been used extensively evaluate various CFD methods. Six unsteady models were used and the results …


Machine Learning Analysis To Characterize Phase Variations In Laser Propagation Through Deep Turbulence, Luis Fernando Rodriguez Sanchez Jan 2020

Machine Learning Analysis To Characterize Phase Variations In Laser Propagation Through Deep Turbulence, Luis Fernando Rodriguez Sanchez

Open Access Theses & Dissertations

The present Dissertation is focused on the analysis of the atmospheric conditions of a turbulent environmental system and its effects on the diffraction of a laser beam that moves through it. The study is based on the optical communication of two labs placed at the summit of two mountains located in Maui, Hawaii. The emitter system is located at the Mauna Loa mountain and the receiver at the Haleakala. The distance between both mountains is 150 km. The emitter system is at a height of 3.1 km and the receiver at 3.4 km. The maritime environment at the location experiences …


Infinite Photovoltaic Solar Arrays: Considering Flux Of Momentum And Heat Transfer, Andrew D. S. Glick Jun 2019

Infinite Photovoltaic Solar Arrays: Considering Flux Of Momentum And Heat Transfer, Andrew D. S. Glick

Dissertations and Theses

Large scale solar farms supply an increasing amount of the worlds electricity supply. However, in order to reach cost parity with fossil fuels, further reductions are necessary. Towards this end, photovoltaic (PV) panel cooling becomes increasingly important; high temperatures both decrease efficiency and panel lifetime. To better understand, characterize, and exploit the natural convective cooling of utility scale solar farms, a model solar farm was created. Using both thermal measurements and particle image velocimetry to characterize heat transfer and velocity fields, wind tunnel experiments were conducted using the model solar farm. Three parameters were examined for their effect on heat …


Direct Numerical Simulation Of Incompressible Spatially Developing Turbulent Mixing Layers, Juan Diego Colmenares Fernandez Apr 2019

Direct Numerical Simulation Of Incompressible Spatially Developing Turbulent Mixing Layers, Juan Diego Colmenares Fernandez

Mechanical Engineering ETDs

Turbulent mixing layers are a canonical free shear flow in which two parallel fluid streams of different velocities mix at their interface. Understanding spatial development of a turbulent mixing layer is essential for various engineering applications. However, multiple factors affect physics of this flow, making it difficult to reproduce results in experiments and simulations. The current study investigates sensitivity of direct numerical simulation (DNS) of such a flow to computational parameters. In particular, effects of the computational domain dimensions, grid refinement, thickness of the splitter plate, and the laminar boundary layer characteristics at the splitter plate trailing edge are considered. …


Adding Semi-Structured Automated Grid Generation And The Menter-Shear Stress Turbulence Transport Model For Internal Combustion Engine Simulations To Novel Fem Lanl Combustion Codes, Brad Montgomery Philipbar Jan 2019

Adding Semi-Structured Automated Grid Generation And The Menter-Shear Stress Turbulence Transport Model For Internal Combustion Engine Simulations To Novel Fem Lanl Combustion Codes, Brad Montgomery Philipbar

Mechanical Engineering ETDs

The addition of GridPro semi-structured, automated generation of grids for complex moving boundaries for combustion engine applications and the Menter Shear Stress Turbulent Transfer (SST) model are being developed by Los Alamos National Laboratory. The software is called Fast, Easy, Accurate, and Robust Continuum Engineering (FEARCE). In addition to improving the time and effort required to build complex grid geometry for turbulent reactive multi-phase flow in internal combustion engines, the SST turbulence model has been programmed into the Predictor Corrector Fractional-Step (PCS) Finite Element Method (FEM) for reactive flow and turbulent incompressible flow regime validation is performed. The Reynolds-Averaged Navier-Stokes …


Hot-Wire Anemometer Measurements Of Atmospheric Surface Layer Turbulence Via Unmanned Aerial Vehicle, Caleb A. Canter Jan 2019

Hot-Wire Anemometer Measurements Of Atmospheric Surface Layer Turbulence Via Unmanned Aerial Vehicle, Caleb A. Canter

Theses and Dissertations--Mechanical Engineering

An instrumented unmanned aerial vehicle (UAV) was developed and employed to observe the full range of turbulent motions that exist within the inertial subrange of atmospheric surface layer turbulence. The UAV was host to a suite of pressure, temperature, humidity, and wind sensors which provide the necessary data to calculate the variety of turbulent statistics that characterize the flow. Flight experiments were performed with this aircraft, consisting of a large square pattern at an altitude of 100 m above ground level. In order to capture the largest turbulent scales it was necessary to maximize the size of the square pattern. …


Circulation Dependence Of The Interaction Between A Wing-Tip Vortex And Turbulence, Farshid Najarzadegan Jan 2019

Circulation Dependence Of The Interaction Between A Wing-Tip Vortex And Turbulence, Farshid Najarzadegan

Theses and Dissertations--Mechanical Engineering

Vortices are present in many fluid flows and depending on the context they may be either beneficial or harmful for different systems or processes. Planar particle image velocimetry was used to examine the vortex evolution and its decay under different turbulence intensities and vortex circulation. The vortex decayed faster in the presence of high turbulence intensity. Vortex trajectories were impacted by turbulence intensity and vortex strength. Trajectories with no turbulence intensity had less variation. The vortex wandering amplitude decreased with growth of vortex strength. The vortex decay was confined to the core of the vortex, with the tangential velocity at …


Thermally (Un-) Stratified Wind Plants: Stochastic And Data-Driven Reduced Order Descriptions/Modeling, Naseem Kamil Ali Nov 2018

Thermally (Un-) Stratified Wind Plants: Stochastic And Data-Driven Reduced Order Descriptions/Modeling, Naseem Kamil Ali

Dissertations and Theses

Wind energy is one of the significant sources of renewable energy, yet a number of challenges preclude optimal operation of wind plants. Research is warranted in order to minimize the power losses and improve the productivity of wind plants. Here, a framework combining turbulence theory and data mining techniques is built to elucidate physics and mechanisms driving the energy extraction of the wind plants under a number of atmospheric/operating conditions. The performance of wind turbines is subjected to adverse effects caused by wake interactions. Therefore, it is crucial to understand wake-to-wake interactions as well as wake-to-atmospheric boundary layer interactions. Experimental …


Large Eddy Simulations Of Vertical Jets In Crossflow, Pranaya Pokharel Oct 2018

Large Eddy Simulations Of Vertical Jets In Crossflow, Pranaya Pokharel

LSU Doctoral Dissertations

Jets in crossflow (JICF) have applications ranging from oil spill to film cooling of turbine blades. Hence, an understanding of the flow physics is important. The majority of the research has been conducted for low velocity ratios between jet and crossflow with round jets. JICF is demonstrated to behave differently for high velocity ratios and different jet shapes. Circular and rectangular jets are commonly used in aircraft applications. Current study focuses on high velocity ratio JICF issuing from both circular and rectangular exit.

For simulating JICF, an in house code “Chem3D” is used with Large Eddy Simulation (LES) to model …


Intermittency Effects On The Universality Of Local Dissipation Scales In Turbulent Boundary Layer Flows With And Without Free-Stream Turbulence, Sabah Falih Habeeb Alhamdi Jan 2018

Intermittency Effects On The Universality Of Local Dissipation Scales In Turbulent Boundary Layer Flows With And Without Free-Stream Turbulence, Sabah Falih Habeeb Alhamdi

Theses and Dissertations--Mechanical Engineering

Measurements of the small-scale dissipation statistics of turbulent boundary layer flows with and without free-stream turbulence are reported for Reτ ≈ 1000 (Reθ ≈ 2000). The scaling of the dissipation scale distribution is examined in these two boundary conditions of external wall-bounded flow.

Results demonstrated that the local large-scale Reynolds number based on the measured longitudinal integral length-scale fails to properly normalize the dissipation scale distribution near the wall in these two free-stream conditions, due to the imperfect characterization of the upper bound of the inertial cascade by the integral length-scale. When a length-scale based on Townsend's …


Large Eddy Simulation Of Oscillatory Flow Over A Mobile Rippled Bed Using An Euler-Lagrange Approach, Daniel S. Hagan Jan 2018

Large Eddy Simulation Of Oscillatory Flow Over A Mobile Rippled Bed Using An Euler-Lagrange Approach, Daniel S. Hagan

Graduate College Dissertations and Theses

A volume-filtered Large-Eddy Simulation (LES) of oscillatory flow over a rippled mobile bed is conducted using an Euler-Lagrange approach. As in unsteady marine flows over sedimentary beds, the experimental data, referenced in this work for validation, shows quasi-steady state ripples in the sand bed under oscillatory flow. This work approximately reproduces this configuration with a sinusoidal pressure gradient driven flow and a sinusoidally rippled bed of particles. The LES equations, which are volume-filtered to account for the effect of the particles, are solved on an Eulerian grid, and the particles are tracked in a Lagrangian framework. In the Discrete Particle …


Non-Equispaced Fast Fourier Transforms In Turbulence Simulation, Aditya M. Kulkarni Oct 2017

Non-Equispaced Fast Fourier Transforms In Turbulence Simulation, Aditya M. Kulkarni

Masters Theses

Fourier pseudo-spectral method on equispaced grid is one of the approaches in turbulence simulation, to compute derivative of discrete data, using fast Fourier Transform (FFT) and gives low dispersion and dissipation errors. In many turbulent flows the dynamically important scales of motion are concentrated in certain regions which requires a coarser grid for higher accuracy. A coarser grid in other regions minimizes the memory requirement. This requires the use of Non-equispaced Fast Fourier Transform (NFFT) to compute the Fourier transform, by solving a system of linear equations.

To achieve similar accuracy, the NFFT needs to return more Fourier coefficients than …


Development Of An Unmanned Aerial Vehicle For The Measurement Of Turbulence In The Atmospheric Boundary Layer, Brandon M. Witte, Robert F. Singler, Sean C. C. Bailey Oct 2017

Development Of An Unmanned Aerial Vehicle For The Measurement Of Turbulence In The Atmospheric Boundary Layer, Brandon M. Witte, Robert F. Singler, Sean C. C. Bailey

Mechanical Engineering Faculty Publications

This paper describes the components and usage of an unmanned aerial vehicle developed for measuring turbulence in the atmospheric boundary layer. A method of computing the time-dependent wind speed from a moving velocity sensor data is provided. The physical system built to implement this method using a five-hole probe velocity sensor is described along with the approach used to combine data from the different on-board sensors to allow for extraction of the wind speed as a function of time and position. The approach is demonstrated using data from three flights of two unmanned aerial vehicles (UAVs) measuring the lower atmospheric …